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CHAPTER I: INTRODUCTION 

   

Steady-state and time-resolved fluorescence spectroscopy are among the most 

widespread and powerful tools in the study of physical, chemical and biological systems.  In 

this thesis, we discuss the use of these technologies to study range of important processes 

occurring on timescales from femtoseconds (10-15 s) to nanoseconds (10-9 s).  In particular, 

we employ the techniques of time-correlated single photon counting and fluorescence 

upconversion, which are described in detail in subsequent chapter.  The physical problems 

that we address with these technologies are: solvation dynamics in various systems, 

especially proteins; the use of ionic liquids for the hydrolysis of cellulose; and stereoselective 

photophysics in chiral ionic liquids. 

Solvation Dynamics 

In solvation dynamics, we suppose that a charge distribution of the solute, initially in 

equilibrium with the surrounding polar solvent molecules, is instantaneously changed.  This 

sudden alteration of charge disturbs the solvent equilibrium, and the system will relax to a 

new state of equilibrium in accordance with new charge distribution.  The main point of 

interest here is how much time does the system takes to relax to the new equilibrium and 

what features control this relaxation.1  These features are highly relevant to reaction rates 

involving charge transfer because such transfer can be retarded by the inability of the solvent 

to reorganize instantaneously as the reaction proceeds.  In other words if the solvent 

molecules fail to adapt to the new charge distribution as the reactants pass through the 

transition state, the evolving products may recross the free-energy barrier.2   
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Solvation energies relevant to these modifications can be studied experimentally by 

spectroscopic methods, and theoretically by statistical mechanics.3  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure I.1.  Description of solvation dynamics process, showing the relaxation from t=0 to 
t=∞, with the stabilization of the energy with time.   
 

Figure I.1 shows a simple description of the process of solvation of a solute molecule 

(purple sphere) surrounded by polar solvent molecules (yellow spheres) with the arrows 

representing the dipole moments.  EG is the energy of the solute in equilibrium with the 

solvent dipoles before undergoing any change in dipole moment.  EU is the energy at the very 

instant of the instantaneous change in dipole moment (unrelaxed state).  ER is the energy of 

completely solvated (relaxed state).  The difference in energy between EU and ER is defined 

as the solvent reorganization energy, and the time taken by the system to relax from EU to ER 
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is the solvation time.  Use of ultrafast spectroscopic techniques is immensely helpful for 

monitoring solvation process occurring on the order of 10-15s (femtoseconds) to 10-9s 

(nanoseconds) depending on the nature of the solvent used in the study.  Water is known to 

exhibit the fastest solvation compared to other polar solvents,2 whereas proteins exhibit both 

sub-picosecond and longer relaxation times.4,5  On the other hand, viscous solvents like ionic 

liquids show slower response times, on the pico- to nanosecond time scales.6-10 

It is possible to develop a method for studying solvation energies and solvation times 

theoretically by invoking linear response theory and making use of the time correlation 

functions. 

Linear Response Theory
 
 

 
As no such general theory exists for non-equilibrium systems, equilibrium statistical 

mechanics can be extended to describe small deviations from equilibrium in a way that 

preserves its general nature by exploiting linear response theory.  The latter is basically a 

statistical mechanical expansion about equilibrium, in which a system in thermal equilibrium 

is perturbed to a slight extent by an externally applied (constant or time-dependent) field.  

The response due to this perturbation is assumed to be linear.  This forms the basis of linear 

response theory.  It is used to compute the solvation free energies of molecules from 

molecular dynamics simulations.11 

Let us consider a system in equilibrium, described by an unperturbed Hamiltonian Ĥ0. 

The Hamiltonian is changed to Ĥ when an external force F is acting on the system. 

                                                                                                                                   (I.1) 

where Ĥ1 = - ÂF and Â is an operator that represents a dynamical variable A(r
N, pN) that 

couples to the force F. If we consider another dynamical variable B, represented by an 

100
ˆˆˆˆ HHHH +=→
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operator B̂ , which will show a linear response to the perturbation on A, the response in B 

will be represented by the ensemble average 〉∆〈 B .  If we consider a constant external force, 

i.e., dealing with the equilibrium case, the 0〉〈B and 〉〈B can be represented as, 

 

                                                                                                                                               (I.2) 

 

 

 

where 0〉〈B  is the equilibrium value of B, 〉〈B  in the value displaced from the equilibrium, 

and 
TkB

1
=β .  Therefore the induced deviation of B from the original equilibrium value is 

 

 
                                                                   )( 000 〉〈〉〈−〉〈= BAABFβ , since Ĥ1 = - ÂF 

 
                                                                                                                                                                                                          
                                                                    (I.3) 
 
where 〉〈 BAδδ is the correlation between equilibrium fluctuations in A and B, and χBA is the 

response function coefficient of the linear relationship between F and 〉∆〈 B , which is also 

referred to as susceptibility.  Proceeding in the same way as in the static case, under linear 

response theory, the time evolution we obtain is, 

                 

                    (I.4) 
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with                      and                    are the fluctuations from the average equilibrium values. If 

we consider the case when the external force is oscillating with a certain frequency, the 

system will reach a state of dynamic equilibrium with time, where the system will be 

oscillating with the same frequency, and the amplitude of oscillation will characterize the 

response. Assuming that the force is small, and that there is linear relationship between the 

response 〉∆〈 )(tB and the force, we can write  

                                                ∫
∞−

′′−′=〉∆〈
t

BA tFtttdtB )()()( χ                                                (I.5) 

where F(t)=F(t<0); =0(t≥0), with 

0

0

)()0(
1

)( 〉〈=′−′∫
∞−

tBA
Tk

tttd
B

BA δδχ  for t>0                                (I.6)            

Taking the time derivative gives, 

0)()0(
)(

)( 〉〈−= tBA
Tk

t
t

B
BA

&δδ
ξ

χ                                         (I.7) 

This equation relates the pulse response function to a correlation function of the system 

involving one of the variables A and the time derivative )(tB& of the other, B.  The 0〈〉 denotes 

an ensemble average calculated with 0
ˆˆ HH = .  

The nature of A and F may vary. In solvation dynamics, the response changes in the 

first three multipole moments of a solute’s charge distribution.13 Commonly the relaxation of 

solvation energy is computed after the step function change in either point charge (q), dipole 

(µ) or axial quadrupole (Q) located at the center of the solute. In the linear response regime, 

the solvation energies are linearly proportional to ,〉Φ〈q 〉Φ〈∇.µ and 〉Φ〈∇∇.Q , where Φ is 

0)0( 〉〈− AA 0)( 〉〈− BtB
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the electrostatic potential. So the electrostatic free energy of solvation of such point 

multipoles can be written as 

〉Φ〈= qtEsolv 2

1
)(                                                     (I.8) 

                                                                     〉Φ〈∇= µ
2

1
                                                 (I.9) 

                                              〉Φ〈∇∇= Q
2

1
                                             (I.10) 

Substituting qFAB −=Φ−=Φ= ,, , we get  

                                                          0)()()( 〉∞Φ〈−〉Φ〈=〉Φ〈∆ tt                                       (I.11) 

                    ))()0(( 0〉ΦΦ〈= t
Tk

q

B

δδ                              (I.12) 

Thus the expression for solvation under linear response can be written as 

)()0(

)()(
)(

∞−
∞−

≡
solvsolv

solvsolv

EE

EtE
tS                                   (I.13) 

Considering linear response again, the above equation becomes,  

〉∞Φ〈−〉Φ〈
〉∞Φ〈−〉Φ〈

=
)()0(

)()(
)(

t
tS                                     (I.14) 

〉Φ〈
〉ΦΦ〈

≡=
2

)()0(
)()(

δ
δδ t

tCtS                                          (I.15) 

Experiment 

 Recent developments in ultrafast spectroscopic techniques have made it possible to 

compare the experimental data and theory and simulations.  Fluorescence upconversion12 and 

photon-echo4,13 techniques provide time resolution in the range from  tens to hundreds of 
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femtoseconds.  The evolution of solvation free energy can be achieved by monitoring the 

time-dependent shift in the emission spectrum of a probe molecule in a polar solvent.  

Figure I.1, describes the method in which solvation is monitored experimentally using 

fluorescence Stokes shift measurements.12  For studying solvation, a good solvatochromic 

probe molecule is chosen,14,15 which undergoes a large dipole moment change upon 

excitation and shows a significant fluorescence red shift with increasing solvent polarity.  

Initially the probe, which is in equilibrium with respect to the polar solvent molecules, is 

excited with an ultrafast pulse of light, producing an instantaneous change in the dipole 

moment.  On the time-scale of this electronic polarization, the solvent dipoles cannot 

reorganize themselves to this change in the dipole moment, in accord with the Born–

Oppenheimer principle.  But with time, the solvent dipoles start to reorganize around the 

excited dipole and the excited electronic state becomes stabilized, until it reaches an 

equilibrium condition where the probe has undergone complete solvent reorganization.  If 

emission from these transient excited states is monitored with respect to time, then we can 

observe a time-dependent red shift of the emission spectrum relative to the t=0 spectrum, as 

shown in Figure I.1.  Solvation function is given by, 

)()0(

)()(
)(

∞−
∞−

=
νν
νν t

tS                                                 (I.16) 

following equation I.13, where )0(ν is the frequency of the maximum of the emission 

spectrum at t=0, and )(∞ν is the one taken when equilibrium is reached, which is usually 

obtained from the steady-state spectrum.  )(tν s are corresponding peak maxima of the time-

resolved emission spectra at different times.  
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 If the excitation induces a small perturbation, then under linear response theory we 

can write,    

〉〈
〉〈

≡
〉∆〈

〉∆∆〈
≡∝

∞−
∞−

=
22

)()0()()0(
)(

)()0(

)()(
)(

δν
δνδν

δ
δδ

νν
νν t

E

tEE
tC

t
tS            (I.17) 

in which 〉∆〈−∆=∆ )()()( tEtEtEδ  and )(tE∆ is the interaction energy difference between 

the probe in its excited and ground state with surrounding solvent molecules at time t. Thus 

S(t) and C(t) are obtained from experiment and MD simulations respectively, and under the 

assumption of linear response theory the non-equilibrium (S(t)) and equilibrium response 

(C(t)) is considered to be equal, as explained in the above section.  

Dielectric Response  

Dielectric materials are non-conductors but can be polarized in the presence of 

external perturbations such as electric or magnetic fields.  The electric properties of dielectric 

substances are defined by a quantity called the dielectric constant, which is generally 

independent of the applied field but depends on frequency for alternating fields.  Usually 

dielectric materials are divided into two categories: polar and non-polar.  A polar dielectric is 

one in which the individual molecules has a dipole moment even in the absence of any 

applied field.  A non-polar dielectric is one whose molecules do not have any intrinsic dipole 

moment unless they are placed in an external electric field.  In the latter case the field induces 

a perturbation of the electron cloud resulting in the shift in the center of positive and negative 

charges.  If a system initially at equilibrium is perturbed by an external field (E), it takes a 

finite time for the electric charges to relax to their natural random positions and orientations.  

Thus if E is suddenly removed, the polarization (P) would show a gradual decrease or decay 
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asymptotically to zero.  The time scale and the exact shape of the decay profile with time 

depend on the structure of the material and the mechanism causing the polarization.  

There are two distinct types of time dependence which occur in nature.16  First, there 

are regular oscillations of a system at a definite frequency, which will absorb energy from a 

suitable input signal over a narrow range of frequencies close to the resonant frequency. The 

second type is the general and random fluctuations caused by the thermal energy ( TkB2/1 ), 

associated with each degree of freedom of a system.  These random fluctuations absorb 

energy in significant amounts if the frequency of the input signal is sufficiently high.  The 

study of the resonant type of time dependence comes under the heading of “spectroscopy,” 

whereas the relaxation type in the electrical case is known as dielectric relaxation.  In 

practice the relaxation is not measured directly, but by finding the relative permittivity of the 

system at different frequencies of an applied sinusoidal field. At low frequencies, the 

polarization at a given time, P(t) can be obtained by,  

                                          )()1()( 0 tEtP S εε −=                                                    ( I.18) 

But if the frequency of the applied field is increased to a such a point, where the polarization 

of the system is no longer able to follow the rapid changes in electric field, then Sε becomes a 

complex quantity, 

                                                             21 εεε iS += ,                                                       (I.19) 

where 1ε  and 2ε  are the real and imaginary parts of the complex permittivity.  The frequency 

dependence of the complex dielectric constant )(ωε proposed by Debye is 

                                                       
D

S

iωτ
εε

εωε
−

−
+= ∞

∞
1

)(                                                 ( I.20) 
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where Sε and ∞ε are the static and infinite frequency dielectric constants respectively and τD 

is the Debye relaxation time.   

The first theoretical models applied to solvation dynamics in polar media17-19 

assumed the solvent as a homogeneous continuum characterized by )(ωε and solute Cε  as a 

spherical cavity with a centered point charge or dipole.  Dynamical predictions of such 

homogeneous continuum models can be described by equation I.13.  Since the continuum 

model predicts a single exponential relaxation time ( Lt
n etS τ/)( −= ), the Debye equation can 

be split into real and imaginary parts as20  

                                          
221

1
)(

D

S

i τω
εε

εωε
+

−
+= ∞

∞                                                 (I.21) 
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1
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D
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+

−
= ∞                                                 (I.22) 

The relaxation time τL can be related to Debye relaxation time τD as  

                                                           D
C

C
L τ

εε
εε

τ 








+
+

= ∞

02

2
                                                   (I.23) 

The measured solvation times (τ) are independent of the probe molecule employed in the 

solvation studies,15,21 and they are generally greater than the predicted τL, and usually lie 

between τD and τL.  Deviation of τ from τL bears a linear correlation with ε0/ε∞
22 suggesting 

that the assumption of the solvent as homogeneous continuum fails to consider the 

inhomogeneity in the solvent environment, which arises from the molecular details of the 

solvent.  The observed decay of solvation response function S(t) deviates from single 

exponential behavior, which is contrary to the predictions from simple continuum theory.  

This is because in continuum theory the solvent molecules relax with a characteristic time τL 
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(longitudinal relaxation time), which is not a single molecule property but rather a collective 

response of many solvent molecules.  The assumption in continuum theory, that the 

contribution of solvent molecules in proximity to the solute and in the bulk (far from solute) 

are equal is also unreasonable.15,22  These inadequacies in capturing the true solvation 

behavior in polar solvents led to the advent of inhomogeneous dielectric continuum models, 

which considered molecular aspects of solvation, where the dielectric constant varies 

continuously as function of distance from the solute.  In this case, the solvent molecules far 

from the solute are considered to behave like a continuum and the contribution of the solvent 

molecules in the proximity of a solute is much higher compared to those in the bulk.  This 

dielectric inhomogeneity also accounted for multiple solvent relaxation times, which were 

not observed in the simple continuum theory.1 

 Dielectric properties of heterogeneous systems like proteins, micelles, etc. are far 

more complicated than those of simple bulk polar solvents, which have been very well 

studied.  The work presented in this thesis mainly focuses on dielectric relaxation in protein 

environments.  Dielectric properties of proteins play important roles in their structural and 

functional characteristics.  Evaluation of electrostatic energies in proteins includes dielectric 

constants that represent the effect of the protein environment.  There are several electrostatic 

models that have been used to evaluate electrostatic energies in proteins because these effects 

play a major role in enzyme catalysis,4,8 electron transfer,9,10 proton transport,4,11,12 ion 

channels,13,14 ligand binding,15,16 macromolecular assembly,1,17 and signal transduction.18  

The conceptual problems associated with the proper evaluation of electrostatic energies and 

the nature of the dielectric constant are far from trivial.  A simple approach is to approximate 

the protein interior by a dielectric continuum represented by a single dielectric constant, 
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embedded in a cavity surrounded by another dielectric continuum representing the 

solvent.4,23-25  In this approach the inhomogeneous nature of the protein interior is ignored.26  

On the other hand, detailed molecular dynamics simulations using atomistic models27,28 

considering atomic point charges29,30 inside the cavity is computationally costly when applied 

in simulations of large proteins.   

 Considering the difficulties in obtaining the dielectric response in proteins reliably 

Song has developed a well-defined middle ground between the dielectric continuum 

approach and detailed atomistic simulations where a protein molecule in solution is 

represented by a set of polarizable dipoles embedded in a dielectric medium of solvent 

molecules.35  The positions of the dipoles are assigned based on the native structure of the 

protein provided by the x-ray crystal structure.  An intrinsic set of polarizabilities obtained 

for each naturally occurring amino acid residues is assumed to be universal and can be used 

for predicting dielectric properties of any large proteins and can successfully capture the 

salient features of proteins’ inhomogeneity.  This model has been reported to be easily 

generalized to the dynamical case where the evaluation of frequency dependent intrinsic 

polarizabilities can predict the time-dependent dielectric response of systems in which 

chromophores are bound to the interior of large proteins.4,5,36-39 

 To validate the model proposed by Song it is very important to have a model system 

which can be exploited to study the dielectric response in protein environment by 

experiments and simulations.  Numerous systems have been used so far to study solvation 

phenomenon in proteins.  Early studies by Marohn, Boxer, and coworkers have used ANS-

DMA and DANCA, respectively, to show that relaxation in myoglobin occurs on nanosecond 

time scales, unlike that in polar solvents.40,41  The former probe molecule afforded a single 
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exponential response of 9.1 ns while the latter, a more complicated response with both 

shorter and longer response times.  Recently, Boxer and coworkers 42,43 have incorporated a 

synthetic fluorescent amino acid, Aladan (synthesized with PRODAN and alanine residue), 

into seven different sites of the B1 domain of the 56-amino acid protein, streptococcal 

protein G, GB1, to measure the time-dependent Stokes shifts from the femtosecond to 

nanosecond time scales.  These probes are substantially flexible, and are likely to undergo 

excited-state charge transfer reactions, which could seriously complicate the interpretation of 

solvation dynamics.  This class of chromophores is notable for its dual emission from 

locally-excited and charge-transfer states.12,44  Fleming and coworkers probed eosin in the 

hydrophobic pocket of lysozyme to study its relaxation in the pocket environments using 

photon-echo peak shift experiments and have reported that almost 70% of the relaxation is 

completed within < 20 fs.4  

The Biological Water Model 

 On the contrary Zhong, Zewail and coworkers used the intrinsic single tryptophan of 

various proteins45-51 as a probe to study solvation dynamics and have reported slow 

relaxation, from which they inferred the presence of “biological water”:  water molecules in 

the immediate vicinity of a surface believed to have different properties from those of bulk 

water 52-56.  For example, they report that the dynamics are significantly slower for the 

surface tryptophan residues in Subtilisin Carlsberg 47 and in monellin 48 than for that of 

tryptophan in bulk water, and they argue that the slow relaxation arises from the water 

molecules constrained on the protein surface.45 

This “biological water” comprises two components: one is “free water” and the other 

is attached to the biomolecule by a strong hydrogen bond and rotates only in a coupled 
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fashion with the slowly rotating biomolecule.  The latter species is termed “bound water”. 

Beyond this solvation shell the water molecules behave as ordinary water, and are termed 

“bulk water”.  Thus, the model consists of three parts. First, it is assumed that the “free 

water” molecules are free to rotate and to contribute to the dielectric relaxation process. The 

bound waters are at least doubly hydrogen bonded, so they can rotate only in concert with the 

biomolecule. Second, the dynamic exchange between the free and bound water species exists 

at all times: boundwaterfreewater OHOH ][][ 22 ⇔ . Third, the effect of the rotation of the 

biomolecule is included in the theoretical scheme.57 

These differences in the interpretations of various experiments are in no small part 

due to the lack of a reliable dielectric response function for the studied proteins from either 

experiments or computer simulations.  The discrepancies between the results for these 

different probe molecules led us to search for other probes.  Earlier studies by Stryer showed 

that ANS non-covalently and stoichiometrically binds with apomyoglobin and 

apohemoglobin, using fluorescence excitation, emission and polarization measurements.58  

Later Cocco and Lecomte have characterized the ANS–apomyoglobin complex using nuclear 

magnetic resonance spectroscopy, and proved that ANS resides in the distal side of the heme 

pocket.59  We thus initially considered probe molecules like ANS59 and biliverdin,60 for both 

of which there are structures of their complexes with apomyoglobin.  However, neither of 

these chromophores is ideal because their absorption spectra are complicated by overlapping 

electronic states. Even if internal conversion from higher-lying states to the lower fluorescent 

state is faster than solvation dynamics, as has been suggested to be the case in 

tryptophan,45,47,48,61 an accurate determination of the reorganization energy4,8 based on the 

steady-state spectra becomes very difficult.  Although chromophores like PRODAN, 
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DANCA,62 ANS58,59 and ANSDMA40 are reported to bind to the heme-pocket of 

apomyoglobin, they are not apt for studying solvation dynamics in protein environments 

because of the possibility of emission from different excited states.  Thus we have proposed 

an alternative and robust system: coumarin 153 inside the heme pockets of monomeric heme 

proteins, such as myoglobin and leghemoglobin, as discussed below. 

Heme Proteins 

A heme protein is a metalloprotein containing a prosthetic group (heme) bound with 

the rest of the protein (globin).  Heme is constituted of a tetrapyrrole moiety called porphyrin 

with iron located in its center.  Heme containing proteins have attracted the attention of the 

scientific community since the beginning of modern enzymology.  With their colored 

prosthetic groups, varied oxidation states, and diverse biological functions, they have 

provided a rich and fertile terrain for the elucidation by chemists, biophysicists, and 

biologists of protein structure–function relationships.63  Much of the earliest work on heme 

proteins centered on the readily available globins (hemoglobin, myoglobin), peroxidases, and 

electron transfer proteins (the cytochromes).  Heme proteins have diverse biological 

functions including oxygen transport, catalysis, active membrane transport, electron transfer 

and other sensory and defence functions.  The heme group in myoglobin and hemoglobin 

gives the ability to bind oxygen because of the presence of iron atom.  It also contributes to 

the red color found in muscles and blood.  Each heme group contains an iron atom that is 

able to bind to one oxygen (O2) molecule. 
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Figure I.2. System studied: Myoglobin with the prosthetic heme group is the holo-form, and 
that without the heme is the apo-form. Fluorescent dye coumarin 153 is inserted in the vacant 
heme pocket of the apomyoglobin. 
 

Our work has been focused on relatively smaller globular heme proteins such as 

myoglobins and leghemoglobins.  Myoglobin is the monomeric hemoglobin consisting of 

153 amino acid residues found in muscle fibers of most mammals. Leghemoglobins are also 

monomeric heme proteins and are found in root nodules of leguminous plants. Comparisons 

between them are interesting because myoglobin and leghemoglobin share a common globin 

fold, but they have differences in their hemepockets.64,65  For example, the F-helix is oriented 

in such a way that in myoglobin HisF8 (His93) eclipses the pyrrole nitrogens of the 

porphyrin but in leghemoglobin it is staggered with respect to them.   In the myoglobin 
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proximal hemepocket, SerF7 facilitates a hydrogen bonding network that drives HisF8 into a 

conformation that destabilizes ligand affinity.  The opposite is true in leghemoglobin, which 

lacks SerF7 and contains a proximal hemepocket that destabilizes ligand binding.  The two 

proteins exhibit differences on the distal sides of their heme pockets as well.  The 

leghemoglobin distal pocket is larger and more flexible than those of most other hemoglobins 

and contains a combination of HisE7 (His64) and TyrB10 not found naturally in any other 

hemoglobin.  

 

 

 

 

Figure I.3. Structure of solvatochromic probe coumarin 153 (C153) 

There are four main considerations for our choice of this system.  First, coumarin 153 

(C153) is a well characterized and widely used chromophore for solvation dynamics studies 

14,15,66-75 because it is exquisitely inert, structurally rigid and also associated with a large 

change of dipole moment upon optical excitation.  Also the excited-state solvation has been 

demonstrated not to involve any contributions other than those from S1.
66  Second, binding 

studies and molecular dynamics simulations indicate that coumarin indeed is in the 

hemepocket. 36,37  We have experimentally obtained a binding constant of ~ 6 µM for 

coumarin 153 and apomyoglobin and have characterized the complex36,37 using Job’s plot, 

capillary electrophoresis, fluorescence anisotropy, and circular dicroism experiments. 

Having characterized the C153/apomyoglobin complex (Figure I.2) as a model 

system to study solvation dynamics in protein environments,5,38 we have performed 

O ON

CF
3



www.manaraa.com

 18 

fluorescence upconversion experiments to construct the solvation correlation function, C(t) 

and have compared the experimentally determined functions with those obtained from 

molecular dynamic simulations. 39  We discuss these in chapters III, IV and V in details.   

Room Temperature Ionic Liquids  

Room temperature ionic liquids, most commonly comprised of organic cations and 

inorganic anions, are receiving an increasing amount of attention because of their utility as 

environmentally friendly, “green” solvents and because of a host of practical applications to 

which they are amenable. 76-79  The term “ionic liquids” was selected with care, because it 

was believed that the more commonly used phrase ‘molten salts’ invoked a flawed image of 

these solvents as being high temperature, corrosive viscous media (for example, molten 

cryolite).   In reality, room temperature ionic liquids can be liquid at temperatures as low as  

–96°C, are colorless, and easily handled.  In the recent academic and patent literature, ionic 

liquids are normally taken as being liquids entirely made of ions that are fluid at temperatures 

around 100°C or below.  There is nothing sacred about the temperature of 100°C.  It is 

merely a convenient, arbitrary marker.76 

The importance of ionic liquids has consequently stimulated considerable interest in 

their dynamic solvation properties. 6,8,31,80-107  Major questions regarding dynamic solvation 

by ionic liquids deal with whether the organic cation or the inorganic anion solvate 

preferentially on different time scales, the role of the correlated motion of the ion pairs and 

their lifetime, and the importance of translational motion of the ions relative to dipolar 

relaxation. 8,31,97   

Chiral recognition is a very important phenomenon in biochemical systems as well as 

in technological applications, enabling specific design of pharmaceuticals, chiral sensors and 
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molecular devices.108  In asymmetric organic photochemistry, chiral recognition in the 

excited state is vital to achieve enantio-selectivity during photosensitization and quenching 

processes.  As a result, investigations of stereoselective photochemical processes have 

become an attractive area in recent years,109,110 and chiral ionic liquids provide a fascinating 

medium to study stereoselective processes.  Only a few examples of chiral ionic liquids have 

been reported so far. 111-116 

 Armstrong and co-workers have used a variety of methods to synthesize chiral ionic 

liquids either from chiral starting materials or using asymmetric synthesis.117  They have 

provided the first application of chiral ionic liquids as stationary phases in chromatography 

using chiral ionic liquids as stationary phases in gas chromatography.  Several compounds 

have been separated using these ionic-liquid-based chiral selectors.  A large number of 

compounds, including alcohols, amines, sulfoxides, and epoxides were injected into the 

chiral-ionic-liquid based columns.  These experiments demonstrate the first successful 

application of chiral ionic liquids as stationary phases in gas chromatography.118,119   

Chiral discrimination in excited-state processes has been studied by several groups in 

the past few years.  The groups of Miranda120-131 and Tolbert132 have made considerable 

advances in this domain.  Electron transfer induced by photoexcitation plays a vital role in 

numerous chemical and biological processes23,133,134.  The rate of electron transfer is said to 

depend on the viscosity and the polarity of the solvent, especially in the case of 

intermolecular processes.   

We have studied the interaction of a chiral naproxen dyad molecule in menthyl-based 

NTf2 ionic liquids and bis(tertrabutylphosphonium) tartrate ionic liquids.  We found that 

unlike in the menthyl pair, the amount of quenching is different in the bis(TBP) tartrate 
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isomeric liquids; and the tartrate enantiomers have a different temperature dependence on the 

nonradiative rate of the dyad.  This chiral discrimination most likely arises from the steric 

effects of the different conformations of the chiral molecules.  We have shown that viscosity 

and polarity of the solvents can influence the rate of electron transfer.  On the other hand, 

such electron transfer was frustrated in the menthyl-based NTf2 solvents.  It is noteworthy 

that we have observed chiral discrimination by ionic liquids on both radiative and 

nonradiative processes.135,136 

Cellulose and Cellulase enzymes 

The efficient conversion of biomass into fuels is becoming increasingly important 

owing to diminishing resources of fossil fuels, as well as to global warming issues.  Cellulose 

is the most abundant biorenewable material on the planet and is one of the main constituents 

of biomass.  Consequently, during the past two decades, considerable effort has been devoted 

to the hydrolysis of cellulose in order to convert it into fuel. 137-143  There are, however, 

limitations to this process that are imposed mainly by the limited solubility of cellulose in 

water or other organic solvents.   That is, cellulose is a linear polysaccharide chain (Figure 

I.4) consisting of hundreds to thousands of D-anhydroglucopyranose linked together by β 

(1�4)–glycosidic bonds.139  In order to make the entire process of enzyme-catalyzed 

hydrolysis of cellulose green, the use of ionic liquids as solvents or co-solvents has received 

growing attention. 

Of the several steps involved in the production of ethanol from cellulose, the most 

crucial and difficult is the cellulolysis, which is the hydrolysis of the cellulose polymer chain 

into glucose units.139,141,143  Different catalysts have been used for this reaction, such as metal 
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chlorides,140,142 acids, or enzymes.137,144,145  The most common and widely used enzyme for 

this saccharification of cellulose is cellulase.  

  

 

 

 

 

 

 

 

 

 

 

Figure I.4.  Structure of linear polymer chain of cellulose, showing inter chain hydrogen 
bonding interactions.    

 

Cellulase refers to a class of enzymes produced chiefly by fungi, bacteria, and 

protozoa that catalyze the cellulolysis (or hydrolysis) of cellulose.  However, there are also 

cellulases produced by other types of organisms such as plants and animals.  Several 

different kinds of cellulases are known, which differ structurally and mechanistically. 

Cellulases from fungal origin are known to be most powerful in cellulose hydrolysis.146  The 

most common fungi from which cellulase has been prepared are Tricoderma reesei,147,148 

Tricoderma viride,149 Tricoderma koningii,150 Aspergillus niger,151 Sporotrichum 

pulverulentum.152  These fungi produce multicomponent enzyme system consisting of 1,4-β-

D-glucanohydrolase (endoglucanse; EC 3.2.1.4), 1,4-β-D-glucan cellobiohydrolase 

(exoglucanase; EC 3.2.1.91) and β-D-glucoside glucohydrolase (β-glycosidase; EC 3.2.1.21) 

etc.  Endoglucanase and exoglucanase work synergistically 153 in the hydrolysis of cellulose 

polymers, whereas β-glycosidase functions in removal of cellobiose, which is a strong 

inhibitor of endo- and exoglucanases (Figure I.5).154,155  

 

O O
OOO

OO

O
H

O

O
O

H

O

O
H

O
H H

O
HOH

OH

O
H O

n=100-1000

O O
OOO

OO

OH

O

O
O

H

O

O
H

O
H

O
H

H

OH

OH

O
H OH

H

H



www.manaraa.com

 22 

  

 

 

 

 

 

 

 

 

 

Figure I.5. Role of individual cellulase components in the hydrolysis of cellulose to glucose. 

 

During the last decades, much attention has been paid in the field of biocatalysis in 

ionic liquids 144,156-159 by both academia and industry, because ionic liquids satisfy the green 

principles76 that they should be environmentally benign, less hazardous, and provide 

improvements to industrial processes.  Although numerous exploratory studies have been 

performed recently, the relationship between the structure of the ionic liquid and the activity 

or stability of the enzyme is not clearly understood.  The most thoroughly studied enzyme in 

ionic liquids so far is Candida antarctica lipase B, used to catalyze transesterification 

reactions. 144,156,160  The work presented in this thesis is mainly devoted to cellulase in ionic 

liquids and its effect on the stability and activity of cellulase, since studies of cellulase-

induced catalysis in ionic liquids is limited. 141,161-164 
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 The physical and chemical properties of ionic liquids vary considerably depending on 

their cation–anion pair.  Several attempts have been made to explore the activity of enzymes 

in ionic liquids, and there are various issues concerning the stability of these 

biomacromolecules in ionic liquids.  Most of them are ineffective for biocatalyis.  It has been 

suggested that ionic liquids containing the anions Cl-, Br-, NO3
-, CF3SO3

-  denature enzymes 

owing to their higher basicity and, hence, higher affinity for hydrogen bonds.77,165  There are 

diverse opinions concerning the effect of fluorinated anions, such as BF4
- and PF6

-, on the 

enzyme’s lifetime.  Some reports suggest that since charge can be distributed over several 

fluorine atoms, the hydrogen bond affinity is minimized between the solvent and the enzyme 

and that, consequently, there is no interference with the internal hydrogen bonding network 

of the enzyme, maintaining its secondary structure.144   

Biocatalysis in ionic liquids requires careful attention to the issue of the purity of 

ionic liquids.144  Several groups have disagreed on whether or not an enzyme is active in a 

particular ionic liquid.   For example, Schöfer et al. 166 reported that Candida antarctica 

lipase B had no activity in bmim BF4 or bmim PF6, but other groups reported good activity 

for transesterification or ammoniolysis in the same ionic liquids. 167-169  Impurities may cause 

these inconsistencies.  

One must also consider the compromise between viscosity and solubility.  High 

viscosity is probably inherent to ionic liquids due to strong intermolecular forces between 

solvent ions.144,170,171  The inherent high viscosity of the ionic liquids is a retarding factor for 

the rate of enzymatic hydrolysis, since it slows the diffusion of the enzyme to its target.  

Viscosity increases with the length of the alkyl chain.  Although the highly viscous bmim Cl 

(11000 cP at 20°C171) slows down the rate of cellulase induced hydrolysis of cellulose,161 it 



www.manaraa.com

 24 

can dissolve a substantial amount of cellulose.172 As opposed to bmim Cl, cellulose has very 

limited solubility in bmim PF6 (317 cP at 20°C
171) and bmim BF4 (233 cP at 20°C

173), 

whereas the latter keeps the enzyme active. Thus it is very challenging to find the right 

combination for the cation–anion pair that can form a compromise between the opposing 

factors of dissolving cellulose, retaining the activity of the enzymes, and having a low 

viscosity.   

The work presented in chapter VI and VII explores the activity of cellulase in a wide 

variety of ionic liquids with a judicious choice of different cations and anions and compare 

them with each other.  We employed steady-state optical absorbance and fluorescence 

measurements as well as differential scanning calorimetry and thermal and microwave 

heating techniques to understand the stability of cellulase and its activity in different ionic 

liquids.  We found that certain ionic liquids 174 stabilize the cellulases at temperatures as high 

as 115 ˚C whereas the enzymes are irreversibly denatured at 50 ˚C in aqueous buffer.   

Hydrolysis in ionic liquids is slower than that in buffer, which is attributed to the higher 

viscosity of the ionic liquids.  Furthermore, while quenching of the fluorescence of the 

intrinsic amino acids of cellulases has been interpreted as a signal of protein denaturation 

(attributed to chloride ions), we demonstrate that such quenching is not necessarily 

associated with denaturation.  When it does occur, for example, in the presence of ionic 

liquids formed from imidazolium cations and chloride anions, it arises from the imidazolium 

rather than the chloride.   

 Having established that in HEMA the cellulase is stable and thermally resistant even 

at temperatures close to 100oC, we extended our studies to aqueous mixtures of HEMA at 

different temperatures.175  We have studied a pure component of cellulase, endo-1,4-β-D-
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glucanase from fungus Aspergillus niger and found that the pure endoglucanase denatures at 

~55˚C and the cellulose hydrolysis reaction ceases after two hours in buffer but the reaction 

progresses monotonically in the ionic liquid.  Furthermore, HEMA imparts substantial 

stability to the enzyme, permitting the activity to peak at 75˚C.  As a result HEMA proves to 

be a novel, green medium for performing cellulose hydrolysis reactions to convert biomass 

into biofuels.  Because of the thermal stability it imparts to enzymes, it provides an ideal 

starting point for the design of ionic liquids, not only for the hydrolysis of biomass, but for 

use with a wide spectrum of enzymatic reactions.   

 

Thesis Organization  

Following this general introduction based on the various systems studied and their 

background and significance presented in the current chapter, the succeeding chapters are 

organized as follows.  

Chapter II. Experimental techniques, fundamental concepts underlying them, and methods of 

data analysis. 

Chapter III. Solvation dynamics in two monomeric heme proteins: myoglobin and 

leghemoglobin.  Comparison of fluorescence upconversion measurements with molecular 

dynamics simulations. 

Chapter IV. Several considerations for the construction of the solvation correlation function 

and its implications for the interpretation of dielectric relaxation in proteins are presented in 

detail. 

Chapter V.  Comparison of the dielectric response obtained from fluorescence upconversion 

measurements and molecular dynamics simulations for coumarin 153 bound to the heme 
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pocket of wild type apomyoglobin and its mutants.  The agreement and disagreement 

between experiment and theory is explained based on the structure of the dye-protein 

complex used in the simulation studies.  Extensive characterization studies have been 

performed using NMR and fluorescence methods. 

Chapter VI.  Enzyme catalyzed hydrolysis of cellulose in several ionic liquids.  Out of the 

many liquids studied only two were found to be effective in balancing the condition of 

cellulose hydrolysis and enzyme stability.  This work presented is a green approach towards 

the production of biofuels. 

Chapter VII.  Extension of the work presented in chapter VI.  Cellulose hydrolysis was 

studied using a pure enzyme Aspergillus niger in different aqueous mixtures of ionic liquid, 

tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA) at different temperatures.   

Chapter VIII. Influence of chiral ionic liquids on stereoselective fluorescence quenching by 

photoinduced electron transfer in a naproxen dyad. 

Chapter IX.  General conclusions drawn from the work presented in this entire thesis. 
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CHAPTER II: EXPERIMENTAL TECHNIQUES AND DATA ANALYSIS 

 

Fluorescence spectroscopy measurements can be broadly classified into two 

categories, namely, steady-state and time-resolved.1  Steady-state measurements involve 

constant illumination of the sample with a continuous beam of light while the emission 

spectrum is recorded by scanning the emission monochromator and corrected for detector 

response.2  Steady-state spectra generally report on equilibrium conditions when all the 

vibrational and solvent induced relaxation of the excited species are completed and the rate 

of excitation and emission under constant illumination are equal.  On the other hand, time-

resolved measurements are performed with a pulsed light source; and the decay of the 

fluorescence intensity is monitored as a function of time with fast detection systems.   A 

steady-state observation is the average of the time-resolved phenomena over the intensity 

decay of the sample.  For a fluorophore that exhibits exponential fluorescence decay, the 

intensity profile is given by,  

                                                           )/exp()( 0 τtItI −=                                                   (II.1) 

where I0 and τ  are the intensity at t=0 and the mono-exponential decay time, respectively.  

The fluorescence quantum yield is the ratio of the number of photons emitted to the number 

absorbed.  It is expressed as,  

                                                               
nrr

r

kk

k

+
=Φ                                                         (II.2) 

where k is the rate of depopulation of the excited state through radiative (r) and non-radiative 

(nr) processes.   The fluorescence lifetime (τ ) is related to the quantum yield as 

                                                                      rk/Φ=τ .                                                      (II.3) 
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Another simple way of relating the steady-state to the time-resolved measurement is,  

           ττ 0

0

0 )/exp( IdttII SS =−= ∫
∞

                                   (II. 4) 

which is in accordance with equation 2 and 3, where ISS is the steady-state fluorescence 

intensity.  

 This chapter solely focuses on the time-resolved measurements and associated 

concepts of different time-resolved techniques used in the latter chapters of the thesis.  As 

mentioned above, all time-domain experiments need a pulsed light source, which in our 

laboratory is the pulsed laser.  The chapter begins with the description of the principle 

excitation source obtained from the titanium-sapphire oscillator, whose output is frequency 

doubled or tripled to produce blue and ultra-violet source for exciting different fluorophores.  

The two principle ultrafast time-resolved techniques, namely time-correlated single photon 

counting and fluorescence upconversion, have been described in detail.  In the next section of 

data analysis, the two most important parameters of solvation dynamics, the reorganization 

energy and solvation correlation function, are discussed in detail.  Other photophysical 

processes, such as fluorescence resonance energy transfer and fluorescence anisotropy decay 

are also discussed.   

Ti:Sapphire Oscillators 

Titanium:sapphire lasers were introduced in 1986,3 and thereafter they quickly 

replaced most dye lasers, which had previously served as the major research tool in ultrafast 

spectroscopy.  Ti:sapphire lasers are very convenient because they can easily be tuned to the 

required pump wavelength and allow one to work with very high pump brightness due to 

their good beam quality and high output power of typically several watts.   
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Figure II.1.  Ti-Sapphire energy level diagram and its absorption and emission range. 4 
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Figure II.2.  Schematic diagram of the Ti-Sapphire oscillator build in our laboratory based 
on Kapteyn-Murnane cavity design.5 
 

The gain medium of the oscillator is the Ti-sapphire crystal, which consists of 0.1% 

titanium added to sapphire (Al2O3) to replace aluminum in the crystal lattice.  The titanium 

atom interacts strongly with the host crystal to make the range of transition energies 

exceptionally broad.  The Ti3+ ion has a very large gain bandwidth (much larger than that of 

rare-earth-doped gain media), allowing the generation of very short pulses6-8 and also wide 

wavelength tunability.  The maximum gain and laser efficiency are at ~ 800 nm. The possible 

tuning range is ∼660 nm to 1180 nm.9  The Ti-Sapphire oscillator is conveniently pumped 

with a 5W Spectra Physics Millenia V Nd:YVO4 (532 nm) laser.  A favorable feature of the 

Ti:sapphire lasers is that they are self-mode locking5,10 and simple tapping on the appropriate 
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mirror can convert it from continuous mode to mode-locked operation by locking the phases 

of laser modes to yield an ultrafast pulse.  The phenomenon of self mode locking is termed 

Kerr lens mode locking.   

Kerr lens mode locking is caused by the self-focusing effect that is produced by the 

nonlinear refractive-index change of the laser rod or an additional nonlinear medium such as 

a crystal.11,12  When an additional intracavity aperture is introduced,13 the operation of mode 

locking can be understood as an effect of the intensity-dependent loss produced by the 

combined action of self-focusing and the aperture.  The operation of mode locking therefore 

is similar to passive mode-locking in solid-state lasers with a fast saturable absorber. 

 

 

 

 

 

 

Figure II.3.  Basic principle of Kerr lens mode locking. 

 

 For highly intense incident light, the refractive index (n) of the passing medium 

depends on the intensity as 

                                                             )()( 20 InnIn +=                                                    (II.5) 

where n2 is the non-linear refractive index.  This intensity-dependent change of refractive 

index is caused by the non-linear polarization of the electron shell induced by the electric 

field of the optical wave and is called the Optical Kerr Effect (OKE).14,15  The 
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electromagnetic field inside the laser cavity has a Gaussian distribution of intensity, which 

creates a similar distribution of the refractive index.  The high-intensity beam is self-focused 

by the photoinduced lens.  This is a consequence of nonlinear response in which the 

refractive index of the material is larger in the center of the beam than at its periphery.  Thus 

the medium behaves like a positive lens tending the incident laser beam to be focused.  If the 

medium length is short enough, the focus will occur outside the material, on other hand 

catastrophic damage will occur if the focusing takes place inside the nonlinear medium 

where its length is sufficiently long.16  On chopping the leading and trailing edges, the 

transmitted pulse becomes shorter than the incident pulse17-19  as shown in Figure II.3. 

Second and Third Harmonic Generation 

Nonlinear optics is the study of phenomena that occurs as a consequence of the 

alteration of optical properties of a medium by the presence of light.  At high optical 

intensities the material response is nonlinear in the input power and new optical frequencies 

can be generated by various intriguing nonlinear optical processes 16,20. The basis for most 

theories in nonlinear optics is a Taylor expansion of the material polarization P(t) in powers 

of the electric field E(t) as 

                          ...)()()()( 3)3(2)2()1( +++= tEtEtEtP χχχ                               (II.6) 

χ(1) is the linear susceptibility.  In linear optics involving weak to moderate optical 

intensities, the polarization depends linearly with the applied electric field, but it deviates 

from linearity with high optical intensities; and the second and third order dependence arises 

as shown in equation II.6, with χ(2) and χ(3) being the second- and third-order non-linear 

optical susceptibilities.  An important symmetry aspect of the above Taylor expansion is that 

all even-order coefficients must disappear for media with inversion symmetry.  The 
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explanation is simple: the operation rr
rr

−→ leaves the inversion-symmetric media 

unaffected, but does add minus signs to both PP
rr

−→  and EE
rr

−→ .  This is only possible 

when χ(n) = 0 for even n.  The phenomena of second and third harmonic generation are most 

common examples of non-linear optical interaction where the second and third order term in 

equation II.6 is associated with the second and third harmonic generation, respectively. 

 The process of second-harmonic generation proceeds in two steps.  In the first step, 

the incident field E1 at frequency ω1 excites a weak nonlinear polarization at the double 

frequency 2
12 EP ∝ .  In the second step this induced nonlinear polarization P2 radiates and 

emits an optical field E2 at optical frequency 2ω. This emission is only efficient when the 

induced dipoles radiate in-phase, which occurs when the refractive indices at ω and 2ω are 

identical, i.e., when n(ω) ≈ n(2ω).  This so-called index matching or phase matching is of 

crucial importance for the efficiency of second-harmonic generation, and it can only be 

conveniently reached in birefringent (or double refracting) materials.21,22  In birefringent 

crystals the refractive index depends not only on wavelength, but also on the polarization 

direction of the electric field vector E with respect to the crystal as illustrated in Figure II.4.23  

In uniaxial crystals, one axis (the so-called optic axis) is different from the other two 

identical axes.  Electric field components perpendicular to the optic axis propagate according 

to the ordinary refractive index no(λ), whereas the orthogonal field components propagate 

according to the so-called extra-ordinary index ne(θ,λ) and it depends on θ as 
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Figure II.4.  (Left) Refractive index ellipsoid for a uniaxial crystal, with optic axis along z-
direction and nO and ne are the ordinary and extraordinary refractive indices and θ is the angle 
between the direction of the electric field (E) and the z-axis. (Right) Possibility of index 
matching at angle θM for an ordinary ray (ω) and extraordinary ray (2ω).

24 
 
 

From Figure II.4, in the case of a uniaxial crystal, the ordinary refactive index is 

independent of the angle (θ) between the propagation vector of the electric field and the optic 

axis, whereas extraordinary refractive index varies with θ.  The amount of birefringence, 

which is the difference between nO and ne is minimum when the E vector is parallel to the z-

axis (θ = 0°), i.e., ne = nO.  When the E vector propagates in the xy-plane (θ = 90°), 

birefringence is maximized.  The index matching condition is achieved for an ordinary ray 

with frequency ω and an extraordinary ray with 2ω, when the ellipse of ω2
en  intersects the 

circle of ω
On  at an angle θM, which can be derived from equation II.7 and is given by  
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The third order term )(3)3( tEχ  in equation II.6 is responsible for the third harmonic 

generation. If the electric field )cos()( 0 tEtE ω= , then the third order non-linear polarization 

can be written as16 

                               tEtEtP ωχωχ cos
4

3
3cos

4

1
)( 3

0
)3(3

0
)3()3( +=                           (II.9) 

The first term in the above equation describes a response at frequency 3ω which is due to an 

applied field of frequency ω, resulting in the generation of third harmonic beam. 

 In our experimental apparatus we use a frequency tripler from U-Oplaz technologies, 

which is equipped with a second harmonic LBO crystal (type I) and a third harmonic BBO 

crystal (type I).  The ~800 nm fundamental (ω) output from the Ti-sapphire oscillator is 

frequency doubled (2ω) to generate 400 nm beam which was the main excitation source for 

our experiments involving coumarin.  For the naproxen samples, the third harmonic (3ω), 

~266 nm light, is generated using both ω and 2ω beams.25 

Time Correlated Single-Photon Counting 

Time correlated single photon counting (TCSPC) is the most popular technique for 

almost all-time domain measurements.  The single-photon counting measurement relies on 

the existence of a probability distribution for the emission of a single photon following an 

excitation event, which yields the actual intensity against time distribution of all the emitted 

photons subsequent to excitation.  The experiment begins with an excitation pulse, which 

excites the sample and starts the time measurement clock.  In an ideal time-correlation 

experiment each photon emitted by the sample as a result of excitation is to be timed and 

recorded.  The response time of the detector and the mode of operation of the time-to-

amplitude converter (TAC) requires only the timing of the first photon in a given time 
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interval after occurrence of the excitation event.  Before the signal reaches the TAC, it passes 

through a constant function discriminator (CFD), whose function is to measure the arrival 

time of the photoelectron pulse with the highest possible time resolution.  This goal is 

compromised because the pulses due to single photoelectrons have a distribution of 

amplitudes.  If one measures the arrival of the pulses by the time when the signal exceeds a 

threshold, there is a spread, ∆t, in the measured times due to pulse height variations.  While 

this effect may seem minor, it can be the dominant factor in an instrument response function.   

The heart of the TCSPC technique is the time-to-amplitude converter (TAC) which is 

analogous to a fast stopwatch.  The role of the TAC is to measure the time gap between the 

START pulse generated by the excitation pulse and that of STOP pulse, which is the first 

photon arriving from the fluorescence of the sample.   The START signal produced by the 

excitation pulses from the laser is used to trigger the voltage ramp of the TAC.  This ramp is 

stopped when the first fluorescence photon hits the detector, and a pulse is generated whose 

amplitude is proportional to the charge of the capacitor and hence the time gap between the 

start and stop pulses.   The output from the TAC is fed into an analog-to-digital converter 

(ADC) where it gains a numerical value and is then stored in a data storage device in an 

address corresponding to that number.  Excitation and data storage are repeated in this 

manner until the histogram of number of counts in a particular time channel represents the 

decay curve of the sample to a desired precision.   The detector used in our system is the 

multi-channel plate (MCP) photomultiplier tube (PMT).  MCP-PMT provides a tenfold 

shorter pulse width than any other PMT, and displays lower intensity after-pulses.  The 

design of an MCP is completely different from that of a conventional photomultiplier 

because it does not have dynodes. Instead, the photoelectrons are amplified along narrow 
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channels lined with the dynode material. Because these channels are very narrow, typically 4 

to 12 microns in diameter, all the electrons travel the same path and hence have the same 

transit time in principle.  Smaller channels result in less transit time spread.  In the MCP-

PMT the channels are angled relative to each other, which prevents feedback between the 

channels and broadening of the time response.26,27  Also, the first MCP surface is typically 

covered with aluminum, which prevents secondary electrons emitted from the top of the 

MCP from entering adjacent channels.  The other most important advantage of MCP-PMTs 

over normal PMTs and avalanche photodiodes (APDs) is the lower transit time distribution 

of the former, which improves the time-resolution of the detector.   

The TAC is the rate-limiting component in data collection, and it takes microseconds 

to discharge the capacitor and rest the TAC, which works perfectly for lower repetition rate 

sources like flash lamps (~50kHz), but becomes overloaded with high repetition rate lasers 

producing MHz pulses.   This problem is cleverly obviated by making the TAC operate in 

reverse mode.28-30  In this mode of operation the first photon detected from the sample serves 

as the start pulse, and the signal from the excitation pulse is the stop signal.  In this way the 

TAC is only activated if the emitted photon is detected.   

Laboratory Set-up for TCSPC 

The laser source for our time-correlated single-photon counting measurements is a 

homemade mode-locked Ti-sapphire laser,31 (Figure II.5) with a repetition rate of 82 MHz. 

The fundamental from the Ti-sapphire oscillator is modulated by a Pockels cell (Model 350-

160, Conoptics Inc) to reduce the repetition rate to about 8.8 MHz and is subsequently 

frequency doubled by focusing tightly into a 0.4-mm BBO crystal. 
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Figure II.5. Schematic diagram of home-made TCSPC set-up in our laboratory. L: lens, M: 
mirror, Pex: excitation polarizer, Pem: emission polarizer, SHG/THG: second or third 
harmonic crystal, BS: beam splitter, PD: photo-diode, S: shutter, λ/2: half waveplate, MCP-
PMT: multichannel plate photomultiplier tube, SPC: single photon counting. 
 

The resulting blue light, which has a central wavelength of 407 nm, provides the 

excitation source.  The fluorescence decays are collected at the magic angle (polarization of 

54.7° with respect to the vertical) to nullify anisotropic effects.  Emission is collected 

through a single monochromator (ISA H10) fitted with a slit having an 8-nm band pass.  A 

half-wave plate before a vertical polarizer ensures that polarization of the excitation light.  
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Recent modifications32 in the TCSPC experimental system include the replacement of NIM-

style electronics by Becker & Hickl photon counting module Model SPC-630.  In the CFD 

channel our previous ORTEC pre-amplifier has also been replaced by Becker & Hickl HFAC 

pre-amplifier.  The instrument-response function of the apparatus has a full-width-at-half-

maximum (fwhm) of ~45 ps, instead of ~100 ps which we had obtained with the NIM 

system.   

Fluorescence Upconversion  

The challenge for the ultrafast spectroscopist is to develop techniques that can take 

full advantage of the ultrashort pulse widths of the femtosecond lasers 33,34 to study the 

dynamics of various systems.  Using a time-correlated single photon counting technique in 

conjunction with fast photomultipliers, it is possible to improve the time resolution at most to 

approximately tens of picoseconds.35  One of the best way for achieving time resolution 

comparable to the laser pulse width itself is based on techniques that use nonlinearity induced 

by the laser pulse as a gate for luminescence.36  Mahr and Hirsh first used one such frequency 

mixing technique in which the luminescence excited by an ultrafast laser is mixed with the 

laser in a nonlinear crystal to generate sum or difference frequency radiation.37  Since the 

mixing process takes place only during the presence of the laser pulse, this provides time 

resolution comparable to the laser pulse width, provided certain conditions are satisfied.  The 

technique of sum frequency generation is also known as upconversion, which provides sub-

piocsecond time.38-48   
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Figure II.6. Schematic diagram of upconversion technique. Sum frequency radiation is 
generated in a nonlinear crystal only during the time that a delayed laser pulse is present. The 
angles θ and φ are defined. 
 

The basic principle of obtaining time resolution using frequency mixing techniques is 

demonstrated in Figure II.6.  The visible fluorescence photon energy (hvfl) excited by an 

ultrafast laser and a pump laser (hvP) are focused on a nonlinear crystal, which is oriented at 

an appropriate angle with respect to the fluorescence and pump beams.  Sum or difference 

frequency photons are generated only during the time that the pump pulse is present at the 

crystal. Thus, frequency mixing acts as a light gate and provides time resolution comparable 

to the laser pulse width.  The time evolution of fluorescence may be obtained by varying the 
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delay of the laser at the nonlinear crystal.  Of the two mixing beams, one is set at fixed time 

delay and delay for the other is varied using a translation stage with a retro-reflector, as 

shown in the Figure II.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.7. Schematic diagram of home-made upconversion set-up in our laboratory. 
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The efficiency of frequency mixing maximizes if the phase matching condition are satisfied, 

20,49 such as,  

                                                                 SPfl ννν =+                                                      (II.10) 

                                                                 SPfl kkk
rrr

=+                                                      (II.11) 

where νh  and k
r
are the photon energies and wave vectors of fluorescence, pump and sum 

frequency or upconverted beams represented by subscripts fl, P and S respectively.  In the 

case of collinear phase matching, equation II.11 reduces to  
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where n is the refractive index at appropriate wavelength (λ).  In the case of an anisotropic 

crystal, the refractive index depends on the direction of propagation along X, Y and Z as 

shown in Figure II.6; and they are designated as nX, nY, and nZ, respectively.  Crystals are 

often uniaxial, where the optic axis is along the z-direction and under such condition nX = nX 

= nO (ordinary index) and nZ = ne (extra-ordinary index).  Thus propagation along k
r
 can be 

written as  

                                               0
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In general, the phase matching conditions (equations II.10 and II.12) cannot be satisfied if all 

three (fl, P, and S ) waves propagate as ordinary (O) rays in the crystal.   However, if one or 

more of the rays propagate as extraordinary (E) rays, phasematching conditions may be 

satisfied by varying the angle between the wave normals and the optic axis.  If fl and P are 

polarized parallel to each other (both O or both E), the interaction is termed type I; if they are 
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polarized orthogonal, it is type II.  The phase matching condition is also dependent on the 

central wavelength of the incident beams, and thus the phase matching angle (θM) for type I 

(BBO-crystal), with the interaction O+O � E is given by,  
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A precise determination of the zero time delay is essential in all ultrafast 

measurements.  The best means of determining the zero in a fluorescence upconversion 

system is by obtaining a cross-correlation trace between the scattered laser light from the 

sample under investigation and a delayed laser beam at the nonlinear crystal used for 

frequency upconversion.  Such a trace provides not only an accurate zero but also an accurate 

measure of the system response time.36 

 Although the fluorescence upconversion technique provides much superior time 

resolution of a few hundreds of femtoseconds, the alignment of the set-up is very critical, 

because of the spatial and temporal overlap of the two beams.  On the other hand the 

upconverted signal is very weak; and an optical chopper and lock-in electronics are required 

to eliminate the background noise.   

Laboratory Set-up for Fluorescence Upconversion 

The laser source for fluorescence upconvesrion is a home-made Ti-sapphire laser.  

The fundamental output from the amplifier (814 nm) is doubled by a type-I LBO crystal (2 

mm).  The frequency-doubled blue pulses (407 nm) are separated from the fundamental by a 

dielectric mirror coated for 400 nm and are focused onto a rotating cell containing the sample 

using a 5-cm convex lens.  The remaining fundamental is used as the gate to upconvert 

emission.  Fluorescence is collected by an LMH-10x microscopic objective (OFR Precision 
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Optical Products) coated for near UV transmission. The gate and the emission are focused by 

a quartz lens (12 cm) onto a type-I 0.4-mm BBO crystal (MgF2 coated, cut at 31°, and 

mounted by Quantum Technology, Inc).  The polarization of both the gate and excitation 

source is controlled with a set of zero-order half-wave plates for 800 and 400 nm, 

respectively.  The upconverted signal is then directed into an H10 (8 nm/mm) 

monochromator (Jobin Yvon/Spex Instruments S. A. Group) with a 5-cm convex lens 

coupled to a Hamamatsu R 980 PMT equipped with a UG11 UV-pass filter and operated at 

maximum sensitivity.  The PMT output is amplified in two stages (total by a factor of 25, 5 

for each stage) by a Stanford research Systems SR-445 DC-300 MHz amplifier with input 

terminated at 500 Ω and is carefully calibrated after a long (1-2 h) warm-up.  Photon arrival 

events are registered with SR-400 gated photon counter operated in CW mode with a 

threshold level of -100 mV.  This signal is fed into a boxcar averager.  A part of the blue 

pulse train is used to normalize pump-beam fluctuations.  A translation stage (Compumotor) 

with a resolution of 0.06 mm/step is used to delay the exciting pulses and a computer with an 

interfacing card from Keithley Metrabyte (DAS 800) is used for driving the motor.  The 

instrument-response function is obtained by collecting the cross-correlation function of the 

blue and red pulses; the resulting third harmonic intensity is plotted against delay time.  The 

cross-correlation functions typically have a fwhm of ~300 fs.   All curves are fit and 

deconvoluted from the instrument function using an iterative convolute and compare least-

squares algorithm. 

Reorganization Energy 

Steady-state excitation and emission spectra were recorded with a SPEX Fluoromax 

with a 4-nm band pass and were corrected for detector response.  A 1-cm path length quartz 
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cuvette was used for the measurements.  The steady-state spectra can be used to compute the 

reorganization energy, ì, by means of50 
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The aσ  and fσ  are the absorption (or excitation) and emission spectral line-shapes, 

respectively, on a wavenumber scale.  The reorganization energy is widely used as a measure 

of the strength of interactions between a chromophore and its surrounding dielectric media in 

solvation dynamics studies.  It is usually taken as half of the Stokes shift.  This estimation is 

accurate if the excitation and emission spectra are Gaussian, but it becomes unreliable if they 

are not.  The actual computation of λ is accomplished by first manipulating the emission and 

excitation spectra to permit their addition and subtraction.  This requires normalized spectra 

consisting of equally spaced points.   These spectra are then converted to corresponding line-

shapes.  This conversion is done by plotting the spectra in wavenumber scale and dividing 

the absorption and emission spectra by ν and ν3 respectively.  We interpolate and 

renormalize them so as to obtain spectra having 20 cm-1 spacing between each point and then 

shift the crossing point of the two curves so that it lies at 0 cm-1.  The spectral baselines are 

then corrected by subtracting the lowest intensity and renormalizing.  This manipulation is 

motivated by the low-intensity emission near 800 nm and questions concerning the utility of 

the correction factors of our fluorometer in this region.  In any case, baseline subtraction is 

minor and changes the final result by approximately 1%.  An appropriate number of zeros is 

added to the high-energy end of the emission spectrum and to the low-energy end of the 
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excitation spectrum so that the curves can be added and subtracted along their entire 

breadths.  λ may now be calculated according to equation II.15.  In practice, however, the 

integration is more conveniently performed from negative infinity to zero instead of from 

zero to positive infinity to avoid interference from transitions to higher-lying excited states.  

Taking these limits of integration is permitted as long as there is mirror image symmetry 

between the emission and excitation spectra.  All data manipulations were performed with 

Microcal Origin 7.0. 

 

 

 

 

 

 

 

 

Figure II.8. Representative wavelength resolved fluorescence transients. 

 

Measurement of Time resolved Emission Spectra and Construction of Solvation 

Correlation Function 

Prior to the invention of the time-correlated single-photon counting technique 

(TCSPC), time-resolved emission spectra (TRES) were measured directly using pulse-

sampling or time-gated detection methods in which the intensity decay was repetitively 

sampled during pulsed excitation.  The detection gate was placed across the intensity decay 
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until the entire decay was measured.  But this technique is limited to the measurement of 

nanosecond lifetimes.51-53  Direct recording of TRES does not provide for deconvolution 

using an instrument response function and thus the TRES contained distortions owing to the 

instrument response function.  

   

 

 

 

 

 

 

 

 

 
Figure II.9.  Representative time resolved emission spectrum fitted with a lognormal 
function to obtain the peak maxima, ν(t). 

 

Currently, time-resolved emission spectra are reconstructed after deconvoluting the 

time resolved intensity decays with the corresponding instrument response function.  First a 
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where ai are the pre-exponential factors, sum of which equals 1, τi is the decay time constant.  

The decays at the blue end are faster whereas those collected at the red edge show significant 

rise times due to the increase in population of the relaxed state.  This trend of traces is 

indicative of the solvation process.  Time resolved emission spectra I(λ,t) are constructed by 

normalizing the traces obtained from equation II.16 so that the time integrated intensity at 

each wavelength is equal to the steady-state intensity at that wavelength.   

Thus I(λ,t) can be expressed as,  

                                                               ∫
∞

=

0

)(

)(
),(

tI

tI
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λ

λ
λλ

                                           (II.17)

 

where 
SSI λ is the steady-state emission intensity at a given wavelength.  ∫

∞

0

)(tI λ  is the 

average lifetime at each different wavelengths.  The time resolved emission spectrum is 

finally obtained (Figure II.9) by fitting the data points I(λ,t) obtained at each given time to a 

lognormal function48,54 

                  { }[ ]{ }2/)1ln(2lnexp);( γαν +−= htI                           (II.18) 

where, 
∆

−
≡

)(2 Pννγ
α .  Four of these parameters namely h = height of the peak, νP = peak 

frequency, γ = asymmetry parameter and ∆ = width parameter, are adjusted in a non-linear 

least square fitting procedure for each time point.  As shown in Figure II.8, these lognormal 

fits provide a very good representation of the time-resolved emission spectra in polar 

solvents.  Using these fitting procedures, the peak frequency maxima (ν(t)) is obtained as a 

function of time.   



www.manaraa.com

 61 

 Followed by the pulsed excitation, the solvent dipoles start to reorganize themselves 

around the excited dipole of the chromophore, leading to the stabilization of the excited state 

with time.  If the time resolved emission spectra are constructed as a function of time, they 

will progressively shift to longer wavelengths (lower energy) with time.   

 

 

 

 

 

 

 

 

 

 

Figure II.10. Representative solvation correlation function plotted against time.  
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where ν(“0”) and ν(∞) are the peak maxima at time t=0 and infinity.  The decay of C(t) with 
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solvation time (τS).  Because C(t) is a normalized function, the accurate determination of C(t) 

depends upon accurate values for ν(“0”) and ν(∞). 

ν(∞) is (usually55,56) the frequency at infinite time, obtained from the maximum of the 

steady state spectrum.  ν(∞) is usually given by the equilibrium spectrum.32,57-59  (This is not, 

however, true in the case of very slowly relaxing solvents, as has been demonstrated in the 

case of certain ionic liquids 55,56,60:  here the emission spectrum at ~3 times the fluorescence 

lifetime of the probe is red-shifted to that of the equilibrium spectrum.)  The ν(t) are 

determined from the maxima of the log-normal fits of the TRES.  In most of the cases, 

however, the spectra are broad, so there is some uncertainty in the exact position of the 

emission maxima. Thus, we have considered the range of the raw data points in the 

neighborhood of the maximum to estimate an error for the maximum obtained from the 

lognormal fit.  Depending on the width of the spectrum (i.e. “zero-time”, steady-state, or 

time-resolved emission spectrum), we have determined the typical uncertainties as follows: 

“zero-time” ~ steady-state (~ ± 100 cm−1) < time-resolved emission (~ ± 200 cm−1).  We use 

these uncertainties to compute error bars for the C(t).  Finally, in generating the C(t), the first 

point was obtained from the “zero time” spectrum.  The second point was taken at the 

maximum of the instrument response function.  

Calculation of zero-time emission spectrum 

 Since the time scale for electronic excitation is much faster than for nuclear motion, 

the excitation instantaneously changes the charge distribution of the probe but the position 

and orientation of the neighboring solvent molecules remain unaltered.  ν(“0”) is the 

maximum of the estimated “zero-time” spectrum of the fluorescent probe after it has 

undergone intramolecular events contributing to its relaxation and before it has been altered 
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by interactions with the solvent.  The appropriate value for ν(0) is not obtained from the 

emission spectrum obtained immediately upon optical excitation with infinite time 

resolution, even if such an experiment were possible.  The construction of the “zero-time” 

spectrum, which thus assumes such a time-scale separation of events, has been described by a 

robust, model independent, and simple procedure by Fee and Maroncelli.61     

 

 

 

 

 

 

 

 

 

 
Figure II.11.  Representative absorption and emission spectra of coumarin 153 in a non-
polar solvent (hexane) and its absorption spectrum in a polar solvent (methanol).  These 
spectra are the basic requirements for computing the zero-time spectrum.  The arrow shows 
how non-polar absorption spectrum is to be superimposed on to the polar absorption 
spectrum to obtain a reasonable zero-time spectrum in the polar solvent, which will be 
provided by the non-polar emission spectrum. 
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emission so this pair can be considered to relate to the two spectra of equal origin state.  Now 

if the frequencies of non-polar spectral pair are shifted in such a way such the non-polar 

absorption spectrum is superimposed on to the absorption spectrum recorded in the polar 

solvent as shown in Figure II.11, then the non-polar emission spectrum provides a reasonable 

zero-time spectrum in the polar solvent.48  

Calculation of the time-zero spectrum relies on interpreting the absorption and 

emission spectrum of the probe in any particular solvent as resulting from the action of an 

inhomogeneous distribution of solvent environments (differing only by an overall spectral 

shift, δ) on an intrinsic vibronic lineshape, which is assumed to be solvent independent.  The 

absorption spectrum can be assumed to be described by the same lineshape function g(ν) and 

thus the corresponding spectrum in a non-polar solvent ( )(νnPA )is given by 

                                                   )()( ννν gAnP ∝                                                    (II.20) 

and that in polar solvent ( )(νPA ) is represented by 

                                                     δδδννν dpgAP )()()( ∫ −∝                                          (II.21) 

where )(δp  describes the Gaussian distribution of solutes over different solvent 

environments as  
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where δ0 is the average shift induced by the polar solvent and σ is the variance of the 

distribution.  Parameters like δ0 and σ are determined by iterative fitting of polar absorption 

spectrum to equation II.21.  The emission spectrum in non-polar solvent ( )(νnPF ) can be 

expressed in terms of emission lineshape function as 
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)()( 3 ννν fFnP ∝                                                    (II.23) 

Considering all these line-shape functions, the emission spectrum observed immediately after 

monochromatic excitation with frequency νex, which is the desired zero-time spectrum is 

given by, 

                              δδδνδδννν dkfpgtF radexexP )()()()()0( 3 −−×∝= ∫                      (II.24) 

where krad is the radiative rate-constant, which is calculated as  
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                                              (II.25) 

The zero-time spectrum obtained from equation II.24 is the fluorescence spectrum observed 

before any solvent motion occurs, but after all the intramolecular equilibration is complete.  

It is given by the convolution of the is solvent distribution initially transferred to the excited 

state, )()( δδν pg ex −  immediately after optical excitation and the fluorescence intensity 

function )()( δδν radkf − .   This method of computing zero-time spectrum provides a critical 

check on whether all of the spectral relaxation has actually been observed in a time-resolved 

experiment.  It also accounts for the missing component of the solvent relaxation that occurs 

within the finite time resolution of a given experimental set-up.  

Fee and Maroncelli have tested the validity of the above model using three different 

probes such as coumarin 153, coumarin 102 and 4-aminophthalimide dissolved in frozen 

solvents, where no spectral relaxation due solvent motion is expected.61  Thus the emission 

spectrum obtained under these conditions directly yielded the zero-time spectrum which is in 

very good agreement (<10% of the total dynamic stokes shift) with those computed using the 

above described method.  In our previous work we have discussed a means of computing the 
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reorganization energy of coumarin 153 due to intramolecular vibrations. The value obtained, 

2068 cm-1, is commensurate with that obtained from computing the reorganization energy 

from the zero-time spectra, 1870±185 cm-1, which speaks to the appropriateness of our 

method as well as to the robustness of the zero-time method described above.62  The 

importance of using calculated zero-time spectrum in constructing the solvation correlation 

function C(t) has been elaborated in chapter IV, where we have shown that underestimating 

the position of the “zero-time” spectrum can exaggerate the amplitudes of slower solvation 

phenomenon leading incorrect interpretations of solvent relaxation.32,63-69   

Fee and Maroncelli also provided a simpler equation for approximating the maximum 

of the zero-time spectrum: 

                                          )()0( em
nP

abs
nP

abs
P

em
P t νννν −−==                                    (II.26) 

where P and nP refer to the position of the emission or absorption spectra in polar or 

nonpolar solvents, respectively.  In our experience, this approximation usually deviates from 

that obtained by the full method by at least a few hundred wavenumbers.  Some workers70-76 

use equation II.26 as a quick way of estimating the position of the zero-time spectrum, but 

we propose that it is no substitute for using the full method—especially when quantitative 

interpretations of C(t) are required.  

Fluorescence Resonance Energy transfer 

Fluorescence resonance energy transfer (FRET) is unique in its capacity to supply 

accurate spatial measurements and to detect molecular complexes over distances from 10 A 

to 100 Å, enabling the definition and detection of a variety of biological organizations.77  

FRET is the physical process by which energy is transferred non-radiatively from an excited 

molecular chromophore (the donor, D) to another chromophore (the acceptor, A) by means 
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of intermolecular long-range dipole-dipole coupling.  The energy transfer being non-radiative 

the donor does not actually emit a photon and acceptor does not absorb a photon, which 

justifies the term resonance energy transfer.   

 

 

 

 

 

 

 

Figure II.12. Representative absorption and emission spectra of an ideal donor-acceptor pair. 
Filled region is the spectral overlap between the fluorescence spectrum of donor and 
absorption spectrum of acceptor. 

 

The essential requirements for effective transfer over distances from 10 to 100 Å are 

that the emission spectrum of D and the absorbance spectrum of A overlap adequately 

(Figure II.12), and that both the quantum yield of D (φD) and the absorption coefficient of A 

(εA) are sufficiently high.  In addition, for the dipole-dipole vectorial interaction to occur, 

either the transition dipoles of D and A must be oriented favorably relative to each other, or 

one (or both) must have a certain degree of rapid rotational freedom so that this latter 

condition is usually satisfied for chromophores attached to biomolecules in solution.78 

The rate of Förster dipole – dipole energy transfer is given by   
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where τD is the average fluorescence lifetime of the donor, R is the distance between donor 

and acceptor and R0 is the critical distance at which the rate of energy transfer is inverse of 

fluorescence lifetime of donor.  The rate constant of non-radiative energy transfer from the 

donor (D) excited state ( e
Dψ ) to the acceptor (A) whose excited and ground states are defined 

by the wavefunctions e
Aψ  and g

Aψ  is given by the matrix79  
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Substituting the equation II.29 into equation II.28 we get,  
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This result implies that the rate of energy transfer varies inversely to the sixth power of the 

internuclear distance (R) between the donor and the acceptor.  Thus, the expression for )(rkT  

expression can be split into donor emission and acceptor absorption matrices respectively as 

follows 
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The emission matrix can be related to the rate of spontaneous emission (ν-3/τrad) and in the 

case of monochromatic absorption the second matrix can be represented as εAν
-1, with εA 

being the molar absorption coefficient.  Equation II.31 can be rewritten using 1/τrad =φD/τD  

as 



www.manaraa.com

 69 

                                                           4

6

2

)( −∝ νε
τ
φκ

A
D

D
T

R
rk                                              (II.32) 

FD(ν) is the corrected fluorescence intensity of the donor in the frequency range ν to ν+dν 

with the total intensity (area under the curve) normalized to unity, and integrating over the 

entire range of frequency we get,  
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Quantitative structural details can be gleaned from the energy transfer data by 

computing the critical distance, R0: 
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where κ2 is the orientation factor, n is the refractive index of the medium (considered as 

1.33), N is Avogadro’s number, ΦD is the fluorescence quantum yield of the donor.  In order 

to calculate the D – A distance it is necessary to know R0, which in turn depends on factors 

such as κ2, ΦD, n and the spectral overlap integral.  κ
2 is dependent on the relative orientation 

of the donor and acceptor moieties and their degrees of freedom.  We have determined the 

distance between the fluorescent dye (coumarin 153 – acceptor) embedded inside the heme 

pockets of apomyoglobins from the two tryptophans (donor) using steady-state and time-

resolved fluorescence studies by selectively exciting the donor and acceptor individually to 

characterize the structure of the dye-protein complexes.80  Details of the calculations have 

been presented in chapter V.  
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Fluorescence Anisotropy 

Upon excitation with polarized light, the emission from many samples is also 

polarized.  The extent of polarization of the emission is described in terms of the anisotropy 

(r).  Samples exhibiting non-zero anisotropies are said to display polarized emission.  The 

origin of anisotropy is the existence of transition dipole moments for absorption and emission 

that lie along specific directions within the fluorophore structure.  In homogeneous solution 

the ground-state fluorophores are all randomly oriented.  When excited by polarized light, 

those fluorophores that have their absorption transition dipole moments oriented along the 

electric vector of the incident light are preferentially excited.  Hence the excited-state 

population is partially oriented.  A significant fraction of the excited molecules have their 

transition moments oriented along the electric vector of the polarized exciting light.   The 

emission can become depolarized by a number of processes.  All chromophores have 

transition moments that lie along a specific direction in the molecule.  Rotational diffusion 

changes the direction of the transition moments and is one common cause of depolarization.78  

Anisotropy measurements reveal the average angular displacement of the fluorophore that 

occurs between absorption and subsequent emission of a photon.81  This angular 

displacement is dependent upon the rate and extent of rotational diffusion during the lifetime 

of the excited state.   The rate of rotational diffusion depends on the viscosity of the solvent 

and the size and shape of the rotating molecule.56,60,82-84 

The measurement of fluorescence anisotropy is illustrated in Figure II.13.  For most 

experiments, the sample is excited with vertically polarized light through a polarizer placed 

in front of the sample cell.  The electric vector of the excitation light is oriented parallel to 

the vertical or z-axis.  The intensity of the emission is measured through another polarizer 



www.manaraa.com

 71 

placed after the sample cell.  When the emission polarizer is oriented parallel (||) to the 

direction of the polarized excitation the observed intensity is called I||.  Similarly, when the 

polarizer is perpendicular (⊥) to the excitation the intensity is called I⊥. These intensity 

values are used to calculate the anisotropy85 
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Figure II.13. Schematic diagram of measurement of fluorescence anisotropy.  The arrows 
inside the cube, represents excited state distribution of electric dipole aligned around z-axis 
after polarized excitation. 
 

z

y

x

excitation
polarizer

emission
polarizer

I⊥

I||

electric dipoles

excitation
beam

fluorescence

z

y

x

excitation
polarizer

emission
polarizer

I⊥

I||

electric dipoles

excitation
beam

fluorescence



www.manaraa.com

 72 

The anisotropy often decays as )/exp()( 0 rottrtr τ−= , with r0 being the limiting anisotropy at 

t=0.  rotτ  is the depolarization time of the fluorophore.  For molecules with z-axis symmetry, 

the angular dependence of anisotropy (r0) can be written as 2/)1cos3(4.0 2
0 −<×= βr  

where β is the angle between the absorption and emission dipole.  In the case of collinear 

geometry between the absorption and emission dipoles r0 equals 0.4, which is the maximum 

possible value.  The value of the anisotropy becomes zero when β= 54.7°(the magic angle), 

and becomes negative at angles greater than the magic angle.  It is important to note that 

normal lifetime decays are collected with the emission polarizer set at 54.7° with respect to 

the polarization of the excitation source to eliminate anisotropy effects.   

Fitting of anisotropy data is very important to obtain accurate results.  One common 

way of analyzing anisotropy results is to fit the parallel and perpendicular decays separately 

and then applying the results into equation II.35.  We follow the method described by Cross 

and Fleming86 in which parallel- and perpendicular-polarized fluorescence curves were fit 

simultaneously.  This method takes full advantage of the statistical properties of the 

measured curves; and, in some cases, it is shown to be more sensitive than other methods to 

systematic errors present in the data.   

Time-resolved fluorescence anisotropy has been used to characterize the rigidity or 

flexibility of probes bound to a macromolecule.  For spherical molecules anisotropy decay is 

expected to single exponential.  In bulk solvents, the decay is very fast (<100 ps) due to rapid 

and free rotational diffusion of a spherical probe molecule of radius ~4.0 Å.87  Deviation 

from single exponential behavior is observed for chromophores bound on the surface and is 

characterized by a fast response (due to its individual local motions) followed by a slower 



www.manaraa.com

 73 

decay time due to the rotation of the entire macromolecule.88,89  Single exponential decays 

for bound chromophores are a signature of rigid binding in a buried site and is characterized 

by a very slow rotational time characteristic of those of the entire macromolecule.80,87   

Viscosity Measurements 

Viscosity is one of the most important properties of fluid.   Viscosity is the tendency 

of the fluid to resist motion.  Essentially it is a measure of the frictional force between 

adjacent layers of fluid as they slide past each other.  Viscosity in general depends strongly 

on temperature.  It increases with temperature in the case of gases owing to molecular 

interchange between adjacent moving layers, whereas it decreases for case of liquids owing 

to the weakening of intermolecular cohesive forces.  Viscosity has a dominant effect on 

phenomenon like solvent mediated processes55,56,90-92 like electron/proton transfer,93 charge 

transfer94 or other diffusive processes like catalysis.95  In this thesis we have studied various 

processes like solvation dynamics,32,60 electron transfer84,96 and enzyme catalysis97,98 in 

highly viscous solvents99 called room temperature ionic liquids.   

 We measure viscosities of different solvents at different temperatures using a 

ViscoLab 4000 piston style viscometer from Cambridge Applied Systems.  It measures the 

viscosity by determining the amount of magnetic force needed to move a piston of certain 

weight and thickness vertically up and down through the liquid.   
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CHAPTER III.  SOLVATION DYNAMICS IN PROTEIN ENVIRONMENTS: 

COMPARISON OF FLUORESCENCE UPCONVERSION MEASUREMENTS OF 
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Abstract  

The complexes of the fluorescence probe coumarin 153 with apomyoglobin and 

apoleghemoglobin are used as model systems to study solvation dynamics in proteins. Time-

resolved Stokes shift experiments are compared with molecular dynamics simulations, and 

very good agreement is obtained. Solvation of the coumarin probe is very rapid with 

approximately 60% occurring within 300 fs and is attributed to interactions with water (or 

possibly to the protein itself). Differences in the solvation relaxation (or correlation) function, 

C(t), for the two proteins are attributed to differences in their heme pockets. 
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Introduction 

 It has been well established by numerous experimental and theoretical studies that 

solvation dynamics in polar solvents can be described by linear response theory.1-13  In 

general, the full frequency dependent dielectric function of the polar solvent (and, perhaps, 

even of ionic solvents 14) gives a good description of the solvation dynamics from the ultra-

fast regime to that of diffusive relaxation.  Some direct and successful comparisons between 

theory and experiments have been established. 1,12-15  Such success is achieved largely 

because the dielectric fluctuations of polar solvents can be described accurately by simple 

linear response models, such as the dielectric continuum model. 16-18  On the other hand, the 

structure and function of a protein are determined by a delicate balance of different 

interactions, mainly of noncovalent nature.  Among these, the correct description of 

electrostatic interactions is critical in the understanding of protein properties.  To date, much 

effort has been put to the investigation of their static role in the structure and function of a 

protein, and considerable progress has been made with this approach for the analysis of 

structural stability, molecular recognition and drug design, the efficiency of enzyme 

catalysis, and other properties. 19-22  For many elementary processes occurring in a protein its 

dynamical dielectric response is also important.  A prime example is that electron and energy 

transfers in photosynthesis are modulated by the dielectric medium of a protein complex. 16  

Studies of these dynamical responses have been a very active field, both theoretically and 

experimentally; 23-34 but in spite of considerable efforts towards the understanding of the 

dielectric relaxation processes in proteins, 2,35,36 up to now a reliable estimate for the 

dielectric response function of proteins is still lacking.   
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For example, a range of experiments has been performed to study dielectric relaxation 

in proteins; but the results have been very disparate.  Early studies suggested that slow 

relaxation, on the nanosecond time scale, exists in myoglobin, 23,24 in contrast to polar 

solvents.  This may not be unexpected owing to structural constraints, but the role of a 

protein's interior motions in its dielectric relaxation is presently unclear from various 

experimental studies. 25,26,29  Homoelle et al. have suggested that the dynamical fluctuations 

observed in phycobiliproteins involve the interior motions of the protein substantially. 25  

Fraga and Loppnow 37 have shown that the resonance Raman spectra are affected by the 

different residue compositions of the blue copper proteins from different species.  On the 

other hand, experimental and theoretical studies of lysozyme suggest that significant 

contributions of the observed dynamical fluctuations come from the surrounding water 

solvent and the water molecules attached on the protein surface. 26  As another example, 

Zewail and coworkers used tryptophan as a probe to study solvation dynamics in proteins 29-

34,38 and have reported slow relaxation from which they inferred the presence of “biological 

water”:  water molecules in the immediate vicinity of a surface believed to have different 

properties from those of bulk water. 2,39-42  For example, they report that the dynamics are 

significantly slower for the surface tryptophan residues in Subtilisin Carlsberg 31 and in 

monellin 32 than for that of tryptophan in bulk water, and they argue that the slow relaxation 

arises from the water molecules constrained on the protein surface. 29  The changes in 

fluorescence emission maxima that they report for Subtilisin and monellin are, however 

1,440 cm-1 and 960 cm-1, respectively.  Given this difference of 480 cm–1 for the two surface 

tryptophans, it would seem that there is also a considerable relaxation arising from the 

different amino acids neighboring them. 
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 These differences in the interpretations of various experiments are in no small part 

due to the lack of a reliable dielectric response function for the studied proteins from either 

experiments or computer simulations.   Studies of the solvation dynamics in proteins, 

nevertheless, offer the best means of investigating the dielectric response.  In this work, we 

discuss the solvation dynamics of the complexes of coumarin 153 (C153, Figure III.1) with 

the monomeric hemeproteins, apomyoglobin and apoleghemoglobin, in water.  There are 

four main considerations for the choice of this system.  
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Figure III.1.  Structures of the fluorescent probe molecules: (a) coumarin 153 (C153),  (b) 
the ammonium salt of 8-anilino-1-naphthalenesulfonic acid (1,8-ANS), (c) anilino-2-
aminonaphthalene-6-dimethylsulfonamide (2,6-ANSDMA) and (d) 2´-(N,N-dimethylamino)-
6-naphthoyl-4-trans-cyclohexanoic acid (DANCA).   The structures for ANSDMA and 
DANCA were incorrectly transmitted in reference. 43 

 

First, coumarin 153 (C153) is a well characterized and widely used chromophore for 

solvation dynamics studies. 44-55   
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Second, we have experimentally obtained a binding constant of ~ 6 µM for coumarin 

153 and apomyoglobin and have characterized the complex. 43,56   In fact, one of our 

motivations for using coumarin to probe the hemepocket was the existence of an NMR 

structure of the dye ANS, a molecule similar to coumarin (Figure III.1), in the hemepocket of 

apomyoglobin. 57  Binding studies based upon a Job’s plot analysis, circular dichroism, 

fluorescence depolarization, capillary electrophoresis, and molecular dynamics simulations 

indicate that coumarin indeed is in the hemepocket (Figure III.2).  Furthermore, the 

coumarin’s rotation in the hemepocket is very slow compared to the relaxation time scale of 

interest (see Figure III.2 of ref. 43).  Finally, for the H64Y/V68F double mutant of myoglobin 

the reorganization energy increases by 5 cm-l and for the H64W mutant it decreases by 90 

cm-1, on the other hand, a surface mutant D112N, has, within experimental error, the same 

reorganization energy as the wild type.  This confirms the presence of coumarin in the 

hemepocket as opposed to the surface.  

Third, while myoglobin and leghemoglobin share a common globin fold, they have 

differences in their hemepockets, 58,59 the region to be probed by the coumarin.  For example, 

the F-helix is oriented in such a way that in myoglobin HisF8 (His93) eclipses the pyrrole 

nitrogens of the porphyrin but in leghemoglobin it is staggered with respect to them.   In the 

myoglobin proximal hemepocket, SerF7 facilitates a hydrogen bonding network that drives 

HisF8 into a conformation that destabilizes ligand affinity.  The opposite is true in 

leghemoglobin, which lacks SerF7 and contains a proximal hemepocket that destabilizes 

ligand binding.  The two proteins exhibit differences on the distal sides of their heme pockets 

as well.  The leghemoglobin distal pocket is larger and more flexible than those of most other 
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hemoglobins and contains a combination of HisE7 (His64) and TyrB10 not found naturally 

in any other hemoglobin. 

Fourth, we can produce a broad range of mutant proteins in which one or several 

amino acids are strategically replaced, so as to test how specific substitutions can affect 

solvation dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.2. A snapshot of equilibrated C153-apomyoglobin in water from 3-ns molecular 
dynamics simulations using CHARMM22 force field.  The C153 is shown in a space-filling 
model, and two histidine residues in the hemepocket are also shown with stick and ball 
models.  His93 is the proximal histidine belonging to the F helix and is also referred to as 
HisF8.  His64 is the distal histidine, also referred to as HisE7. 
 

Materials and Methods 

C153 was purchased from Exciton Inc. (Dayton, OH) and used without further 

purification.  Horse heart myoglobin (Mb) was purchased from Sigma.  Apoproteins were 
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prepared using a method described elsewhere. 60  C153 has very low solubility in water.  A 

stock solution of C153 was prepared by adding a microliter amount of a concentrated 

solution of C153 in methanol to water.  That is, concentrated C153/MeOH was added to 

water, keeping the organic content < 0.3 % (v/v) in the final solution.  To prepare a 5 × 10−5 

M solution of C153/water, 5 µL of 20 × 10−3 M C153/MeOH solution was added to 2 ml of 

water.  The resulting solution was sonicated.  For fluorescence upconversion  experiments a 

stock solution of C153/MeOH was added to 1.2 ml of ~ 1.2 × 10−3 M apoprotein solution 

keeping the organic content < 3 % (v/v) in the final solution with 1:1 protein to C153 ratio.  

All samples were equilibrated for about 2 hours before taking the steady state and time 

resolved measurements. For soybean leghemoglobin (Lba), ammonium sulfate was added to 

30% saturation and centrifuged at 14000 rpm for 10 min.  The protein in the supernatant was 

then precipitated by slowly adding ammonium sulfate (to avoid local denaturation) to 90% 

saturation followed by centrifugation at 14000 rpm for 10 min.  The pellets were resuspended 

in 20mM Tris buffer, pH 8.0 and then loaded onto a Phenyl Sepharose (Sigma) column 

which was pre-equilibrated with 2 M ammonium sulfate in 20 mM Tris buffer, pH 8.0.  The 

protein was eluted with 0.4 M ammonium sulfate.  The eluted protein was dialysed into 20 

mM Tris buffer, pH 8.0.  The dialysed protein was loaded onto a DEAE (Phramacia column) 

and eluted with 75 mM NaCl in 20 mM Tris buffer, pH 8.0. The eluted protein was 

concentrated to ~1 mL and then it was run through a size exclusion column and washed with 

10 mM phosphate buffer, pH 7.0. 

Steady-state measurements.  Steady-state absorbance spectra were obtained on a Hewlett-

Packard 8453 UV-visible spectrophotometer with 1-nm resolution.   All samples were 

prepared in 10 mM phosphate buffer solution.  The concentrations of apoproteins were 
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determined spectrophotometrically using the extinction coefficient 15.2 mM−1cm−1 at 280 nm 

43.  Steady-state fluorescence spectra were obtained on a Spex Fluoromax-2 with a 4-nm 

bandpass and corrected for lamp spectral intensity and detector response.  For both 

fluorescence and absorption measurements, a 3-mm path-length quartz cuvette was used.  

The adequacy of the correction factors and the calibration of our fluorometer were checked 

against the tabulations of Gardecki and Maroncelli.  61 

Time-resolved measurements.  The apparatus for fluorescence upconversion measurements is 

described elsewhere. 62  The instrument response function had a full-width–at-half-maximum 

(FWHM) of 300 fs.   A rotating sample cell was used.  To construct the time-resolved spectra 

from upconversion measurements, a series of decays were collected typically from 480 nm to 

560 nm at 10-nm intervals.  Transients were fit to sums of exponentials, and time-dependent 

spectra were reconstructed from these fits by normalizing to the steady-state spectra: 

                                            0

0

S ( )
S( , t) D( , t)

D( , t)dt
∞

∫

λ
λ = λ

λ
                                                 (III.1) 

D(λ,t) is the wavelength-resolved fluorescence decay, and S0(λ) is the steady-state emission 

intensity at a given wavelength.  We have employed the traditional approach of fitting the 

time-resolved spectra to a log-normal function, 44,62 from which we extract the peak 

frequency, ν(t), as a function of time.   

The solvation dynamics were described by the normalized correlation function: 
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                                              (III.2) 

ν(“t = 0”) is the frequency at “zero time.” 14,63,64  ν(∞) is (usually 65,66) the frequency at 

“infinite time,” the maximum of the steady-state fluorescence spectrum.  ν(t) is determined 



www.manaraa.com

 90 

by taking the maxima from the lognormal fits as the emission maximum.  In most of the 

cases, however, the spectra are broad, so there is some uncertainty in the exact position of the 

emission maxima.  Thus, we have considered the range of the raw data points in the 

neighborhood of the maximum to estimate an error for the maximum obtained from the 

lognormal fit.  Depending on the width of the spectrum (i.e. “zero-time”, steady-state, or 

time-resolved emission spectrum), we have determined the typical uncertainties as follows: 

“zero-time” ~ steady-state (~ ± 100 cm−1) < time-resolved emission (~ ± 200 cm−1).  We use 

these uncertainties to compute error bars for the C(t).  Finally, in generating the C(t), the first 

point was obtained from the “zero time” spectrum.  The second point was taken at the 

maximum of the instrument response function.  Fractional solvation at 300 fs is given by f (t 

= 300 fs) = 1 − C (t = 300 fs). 

Molecular dynamics simulations.  The starting configurations of horse heart myoglobin 

(HHMB) and leghemoglobin (LEGMB) are from the protein DATA BANK (PDB id 1WLA 

and 1BIN) with TIP3P water models.  To have a reasonable starting point for the C153-

protein complex the heme is replaced by C153 and then energy minimization is used to 

obtain the starting configuration of the C153-protein complex. Standard constant pressure-

temperature MD was performed using the ORAC package 67 with the Amber force field. 68  

In all simulations, short-range non-bonded interactions were calculated up to a 10 Å cutoff, 

whereas long-range electrostatic interactions were treated by the SPME method using a very 

fine grid, 128 points per axis, with periodic boundary conditions, and Ewald convergence 

parameter of 0.43 Å–1.  Three different Nosé-Hoover thermostats were coupled to solute, 

solvent, and total center of mass.  An external pressure of 0.1 MPa was applied all along the 

trajectory.  A five time-step rRESPA 69 algorithm with times of 0.5-1.0-2.0-4.0-12.0 fs was 
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used with bond constraints on hydrogen covalent bonds handled by a Shake-Rattle-like 

algorithm.  The final system was first equilibrated with velocity rescaling for 60 ps at 50 K 

and 80 ps at 300 K.  Following this initial equilibration, we ran the system for one additional 

nanosecond at constant temperature (T = 300 K) and pressure (P = 0.1 MPa).  To achieve full 

relaxation, the simulation box was entirely flexible for the first 300 ps, whereas for the 

remainder of the run, only isotropic changes of the box were allowed. 67  Finally, the system 

was simulated for an additional 10 ns.  As we have demonstrated in our previous work, 43 an 

equilibrium configuration for C153 in the heme-pocket of the protein can be found and 

experimental measurements seem to support our interpretation. Using the equilibrated 

configuration, additional 12-ns trajectories are generated and are used for the calculation of 

solvation correlations functions. 

Using the charges of C153 in the ground and excited states, 13 the solvation 

correlation function can be obtained within the linear response theory 70 as 

                                                 
( ) (0)

( )
(0) (0)

E t E
C t

E E

δ δ
δ δ

< ∆ ∆ >
=
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where ( ) ( ) ( )E t E t E tδ∆ = ∆ − < ∆ > , and ( )E t∆  is the interaction energy difference between 

C153 in its excited state and ground state with surrounding protein and water molecules at 

time t.  The symbol < ···
 
> denotes the ensemble average in the simulation.  
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Figure III.3.  Fluorescence upconversion traces obtained for C153 in apoMb at the indicated 
wavelengths.  The maximum intensity of the traces are give relative to the most intense, i.e., 
that at  540 nm.   The decays used to construct the time-resolved emission spectra were 
typically collected over a range of wavelengths from 480 to 560 nm at 10 nm intervals, a 
total of eight or nine decays was used to generate the time-resolved emission spectra, from 
which the C(t) were calculated. 
 

Results 

 Representative wavelength resolved traces obtained on an ~10-ps time scale by 

means of fluorescence upconversion are shown in Figure III.3.  Figure III.4 provides the 

time-resolved emission spectra at 300 fs and 10.3 ps along with the steady-state and “zero-

time” spectra.  Figure III.5 presents the solvation correlation functions, C(t).  The C(t) 

obtained from molecular dynamics simulations are also compared with the experimental data 

in Figure III.5.  Relevant fitting parameters are summarized in Table III.I.  The salient results 

are: 
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1. Almost 60 % of the solvation is complete in both apoMb and apoLba within the time 

resolution of our instrument (300 fs).   

2. The initial faster solvation is followed by a slower response, which is slower in 

apoLba than in apoMb by about a factor of 4 (Table III.I). 

3. There is excellent agreement between the C(t) from fluorescence upconversion 

experiments and those obtained from molecular dynamics simulations.   

TABLE III.1. Solvation parameters of C153 in two monomeric heme proteins (20°C)
a 

System f300fs a1
b τ1  τ2   

a1 

calc 
.

1
calcτ  .

2
calcτ  

<τ> 

 

<τ> 

calc 

ν(“0”)c λ(“0”)d λ(∞)d 

apoMb 0.64 0.59 0.02 3.4 0.73 0.14 9.3 1.4 2.6 20,260 1,850 2,450 

apoLba 0.59 0.60 0.09 13 0.60 0.19 13 5.3 5.3 20,660 1,840 2,590 
 

a Unless otherwise indicated, the parameter refers to that experimentally obtained.  The time 
constants are in picoseconds and the frequencies and reorganization energies are given in 
wavenumbers. 
b The solvation relaxation functions, C(t), are in both cases fit to a sum of two decaying 
exponentials, C(t) = a1 exp(−t/τ1) + a2 exp(−t/τ2), where a1 + a2 = 1.  C(t) is fit from its value 
at unity, i.e., starting at “t = 0”; consequently the early part of its decay is determined by only 
two points.  The τ1 we report are thus upper limits for the early portion of the relaxation.  The 

average solvation time was calculated according to equation: i i

i

aτ τ< >=∑ . 

c For apoMb/C153, ν(“0”) − ν(∞) = 1530 cm−1; for apoLba/C153, ν(“0”) − ν(∞) = 1600 
cm−1.  The “zero-time” spectra were calculated according to the method described elsewhere. 
5,32,33  We use the “zero-time” spectrum in our analysis (Figure III.4), and not any 
approximation for obtaining its maximum.  We use hexane as the nonpolar solvent for the 
“zero-time” calculation. 
d  The reorganization energy, discussed elsewhere, 12,31,33 at “t = 0” and at steady state. 
 

Discussion 

 The rapidity of the solvation in both the proteins studied here suggests that water is 

playing a dominant role, which is consistent with the report by Fleming and coworkers 26 that 
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solvation in the lysozyme/eosin system is dominated by water.  (Solvation in bulk water is 

characterized largely by an ~30-fs component and is complete in ~15 ps. 15,71)  The 

remainder of the solvation can be attributed to motions of the protein matrix or coupled 

protein-water 72 motions.   The protein’s contribution to solvation should not be neglected.  

For example, Nilsson and Halle have simulated the Stokes shift in the protein monellin 73 and 

have discussed how to separate the relative contributions of protein and water.  They find a 

significant protein component, at least 25%.  Li et al. 72 find that the relative protein and 

water contributions can vary substantially with the conformational substate of myoglobin:  

sometimes the protein contribution can even be larger than water.  Both Nilsson and Halle 73 

and Li et al. 72 find that the protein contribution also has an ultrafast component.  Li et al. 

also found that, in disagreement with the “biological water” picture, protein motion (or 

protein-water motion) was essential for the slow (~50-100-ps) time-scale Stokes shifts.  This 

feature was independent of the dynamics apparent from the protein and water Stokes shift 

contributions.  

 Our results are, however, at odds with those of previous attempts to exploit the 

myoglobin system to study the solvation response of proteins.  These studies 23,24 used the 

fluorescent probes, 2,6-ANSDMA and DANCA (Figure III.1).  The former probe molecule 

afforded a single exponential response of 9.1 ns; the latter, a more complicated response with 

both shorter and longer response times.  The discrepancy between the results for these two 

probe molecules as well as the predominance of the long-lived response time caused us to 

search for other probes.   We consequently opted for coumarin 153, which not only has been 

studied in a very wide range of solvents and in the gas phase, but whose excited-state 
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solvation has been demonstrated not to involve any contributions other than those from S1.
44-

55 
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Figure III.4. Normalized time resolved emission spectra for C153 in (a) apoMb and (b) 
apoLba at 300 fs and 10.3 ps.  Corresponding steady-state and “zero-time” spectra are 
included.  Almost 60 % of the solvation is complete in both systems within the time 
resolution of our instrument (300 fs). 
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Figure III.5.  Comparison of C(t) for C153 in apoMb and apoLba obtained from 
fluorescence upconversion experiments with those obtained from molecular dynamics 
simulations.  In both proteins, the initial fast component occurs within the time resolution of 
our instrument. 
 
 Our results are also at odds with those of other studies, 31,33,34 from which it is 

suggested that aqueous solvation in proteins is much slower than that in bulk water.  This 

slow solvation is attributed to “biological water”: 2,39-42   in restricted environments, water is 

proposed to solvate on a much slower time scale, tens to hundreds of picoseconds, as 

opposed to ~1 ps. 2  We note, however, that an accurate determination of C(t) depends upon 

appropriate values for ν(0) and ν(∞).  The latter is usually given by the equilibrium spectrum.  

This is not, however, true in the case of very slowly relaxing solvents, as has been 

demonstrated in the case of certain ionic liquids: 65,66  for example, here the emission 

spectrum at ~3 times the fluorescence lifetime of the probe is red-shifted to that of the 

equilibrium spectrum.  The appropriate value for ν(0) is not obtained from the emission 

spectrum obtained immediately upon optical excitation with infinite time resolution, even if 
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such an experiment were possible, but that arising from the spectrum of a vibrationally 

relaxed excited state that has been fully solvated by its internal motions but that has not yet 

responded to the surrounding solvent.   Fee and Maroncelli 63  have described a robust, model 

independent, and simple procedure for generating this “zero-time” spectrum (ν(“0”)); and we 

have checked its validity using a different method for estimating the “zero-time” 

reorganization energy. 64     Finally, Li et al. 72 have compared experiments and simulations 

for protein solvation and note a significant discrepancy between theory and experiment:  

namely, a very rapid early relaxation is obtained in the simulations but is absent in the 

experiments.  We suggest, based on our results and others to which we refer, that these 

authors are in fact simulating the solvation appropriately and are, rather, missing the rapid 

dynamics in their experiment and its analysis.   

Conclusions  

 The results presented here attest to the utility of coumarin 153 as a probe of protein 

dynamics, as we suggested in earlier work. 43,56  Since the late 1980s, coumarin 153 has 

proved to be the most useful and reliable probe of solvation dynamics, has been exhaustively 

studied, and has successfully withstood numerous challenges to this title. 44-55  Its priority in 

this arena can be attributed to its large Stokes shift (crucial for acquiring an accurate estimate 

of C(t)), relative rigidity, nonreactivity in the excited state, and that its spectral features arise 

from only one electronic state.  The solvation relaxation functions, C(t), obtained from 

complexes of coumarin 153 with apomyoglobin and apoleghemoglobin by means of 

fluorescence upconversion experiments and molecular dynamics simulations are in excellent 

agreement.  Solvation of the coumarin probe is very rapid with approximately 60% occurring 

within 300 fs and is attributed to interactions with water and possibly the protein.  The 
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hemepockets of myoglobin and leghemoglobin differ considerably 58,59 as we note in the 

Introduction, and this manifests itself in both the experimental results and the molecular 

dynamics simulations. 

 The literature concerning protein dielectric relaxation contains conflicting reports and 

conclusions.  Our results are in good agreement with those obtained by Fleming and 

coworkers, 26 who find that the initial solvation dynamics of the lysozyme/eosin complex are 

identical to those of eosin in bulk water.  Our results are, however, rather different from those 

obtained in other studies.  Notably, the dynamics we observe are much more rapid than those 

reported in other work involving monomeric hemeproteins. 23,24  We suggest that the probes 

used, ANSDMA and DANCA (Figure III.2), are not ideal probes of solvation.  They are 

much more flexible than coumarin, and they are likely to undergo excited-state charge 

transfer reactions, which could seriously complicate the interpretation of solvation dynamics.  

This class of chromophores is notable for its dual emission from locally-excited and charge-

transfer states. 74 

 We suggest that owing to their methods of analyzing the Stokes shift data, other 

workers have exaggerated the amount of the slowly relaxing component of solvation that 

they attribute to “biological water.” 2,31,33,34,39-42   While it is possible that water molecules 

may be tightly bound to the protein surface and in this way contribute to slower solvation 

events, we propose that there is no cogent evidence for excluding ultrafast solvation from 

bulk water. 

 Finally, we stress the importance of accurately obtaining the “zero-time” spectrum.  

Its knowledge is fundamental to an accurate construction of the solvation relaxation function. 
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CHAPTER IV.  CONSIDERATIONS FOR THE CONSTRUCTION OF THE 

SOLVATION CORRELATION FUNCTION AND IMPLICATION OF  

DIELECTRIC RELAXATION IN PROTEINS 
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Abstract 

The dielectric response of proteins is conveniently measured by monitoring the time-

dependent Stokes shift of an associated chromophore.  The interpretation of these 

experiments depends critically upon the construction of the solvation correlation function, 

C(t), which describes the time-dependence of the Stokes shift--and hence the dielectric 

response of the medium to a change in charge distribution.  We provide an analysis of 

various methods of constructing this function and review selected examples from the 

literature.  The naturally occurring amino acid, tryptophan, has been frequently used as a 

probe of solvation dynamics in proteins.  Its nonexponential fluorescence decay has 

stimulated the generation of an alternative method of constructing C(t).  In order to evaluate 
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this method, we have studied a system mimicking tryptophan.  The system is comprised of 

two coumarins (C153 and C152) having different fluorescence lifetimes but similar solvation 

times.  The coumarins are combined in different proportions in methanol to make binary 

probe mixtures.  We use fluorescence upconversion spectroscopy to obtain wavelength-

resolved kinetics of the individual coumarins in methanol as well as the binary mixtures of 

75:25, 50:50, and 25:75 of C153:C152.  The solvation correlation functions are constructed 

for these systems using different methods and are compared.     

Introduction  

It has been well established by numerous experimental and theoretical studies that 

solvation dynamics in polar solvents can be described by linear response theory 1-13.  In 

general, the full frequency dependent dielectric function of the polar solvent (and, perhaps, 

even of ionic solvents14) gives a good description of the solvation dynamics from the ultra-

fast regime to that of diffusive relaxation.  Some direct and successful comparisons between 

theory and experiments have been established 11,12,14,15.  The reason for such success is 

largely because the dielectric fluctuations of polar solvents can be described accurately by 

simple linear response models, such as the dielectric continuum model 16-18.  On the other 

hand, the dielectric response in proteins is more complicated. There exist many length scales 

due to the structural constraints created by the carbon back bone. Some studies indicate that a 

linear response model may be valid from atomistic simulations 19,20.   A simple dielectric 

continuum description is clearly insufficient, even though such a description has been widely 

used to correlate experimental data 21-24.   

 Studies of the solvation dynamics in proteins offer the best means of investigating the 

dielectric response and making a comparison with theory.  A range of theoretical and 
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experimental work has been performed to study dielectric responses in proteins; but the 

results have been very disparate.  Early studies suggested that slow relaxation, on the 

nanosecond time scale, exists in myoglobin 25,26 in contrast to polar solvents.  This may not 

be unexpected owing to structural constraints, but the role of a protein's interior motions in 

its dielectric relaxation is presently unclear from various experimental studies 27-30.  Recently, 

Boxer and coworkers 31,32 have incorporated a synthetic fluorescent amino acid, Aladan, into 

seven different sites of the B1 domain of the 56-amino acid protein, streptococcal protein G, 

GB1, to measure the time-dependent Stokes shifts from the femtosecond to nanosecond time 

scales. The seven sites range from buried within the protein core to fully solvent-exposed on 

the protein surface.  Their results clearly offer another demonstration that the protein 

dielectric response is highly inhomogeneous, which is also demonstrated from Golosov and 

Karplus’ molecular dynamics simulations for the same system 33.  Experimental and 

theoretical studies of lysozyme suggest that significant contributions of the observed 

dynamical fluctuations come from the surrounding water solvent and the water molecules 

attached on the protein surface 28.  

 As another example, Zewail and coworkers used the intrinsic single tryptophan as a 

probe to study solvation dynamics in proteins 29,34-39 and have reported slow relaxation from 

which they inferred the presence of “biological water”:  water molecules in the immediate 

vicinity of a surface believed to have different properties from those of bulk water 1,40-43.  For 

example, they report that the dynamics are significantly slower for the surface tryptophan 

residues in Subtilisin Carlsberg 35 and in monellin 36 than for that of tryptophan in bulk water, 

and they argue that the slow relaxation arises from the water molecules constrained on the 

protein surface 29.    
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We have previously discussed the solvation dynamics of the complexes of coumarin 

153 (C153, Figure IV.1) with the monomeric hemeproteins, apomyoglobin and 

apoleghemoglobin, in water 44.  There are four main considerations for our choice of this 

system.  First, coumarin 153 (C153) is a well characterized and widely used chromophore for 

solvation dynamics studies 45-56.  Second, binding studies and molecular dynamics 

simulations indicate that coumarin indeed is in the hemepocket 57,58.  We have experimentally 

obtained a binding constant of ~ 6 µM for coumarin 153 and apomyoglobin and have 

characterized the complex 57,58.   In fact, one of our motivations for using coumarin to probe 

the hemepocket was the existence of an NMR structure of the dye ANS in the hemepocket of 

apomyoglobin 59.  Third, while myoglobin and leghemoglobin share a common globin fold, 

they have differences in their hemepockets 60,61, the region to be probed by the coumarin.  

Fourth, we can produce a broad range of mutant proteins in which one or several amino acids 

are strategically replaced, so as to test how specific substitutions can affect solvation 

dynamics. 

 

 

 

Figure IV.1. Structures of the fluorescent probe molecules that are used in this study: (a) 
coumarin 153 and (b) coumarin 152. 
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Figure IV.2. Comparison of C(t) for C153 in apoMb and apoLba obtained from fluorescence 
upconversion experiments with those obtained from molecular dynamics simulations. In both 
proteins, the initial fast component occurs within the time resolution of our instrument and 
experiment and simulations show excellent agreement with each other. 44 

 

We found that: 

1. Almost 60 % of the solvation is complete in both apoMb and apoLba within the time 

resolution of our instrument (300 fs).   

2. The initial faster solvation is followed by a slower response, which is slower in 

apoLba than in apoMb by about a factor of 4 (Figure IV.2).  

3. There is excellent agreement between the C(t) from fluorescence upconversion 

experiments and those obtained from molecular dynamics simulations.   
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 The rapidity of the solvation in both the proteins studied here suggests that water 

plays a dominant role, which is consistent with the report by Fleming and coworkers 28 who 

studied solvation in the lysozyme/eosin system.  (Solvation in bulk water is characterized 

largely by an ~30-fs component and is complete in ~15 ps 15,62.)  The remainder of the 

solvation can be attributed to motions of the protein matrix or coupled protein-water 63 

motions.  Of course, the protein’s contribution to solvation should not be neglected.  For 

example, Nilsson and Halle have simulated the Stokes shift in the protein monellin 64 and 

have discussed how to separate the relative contributions of protein and water. They found a 

significant protein component, at least 25%.  Li et al. 63 found that the relative protein and 

water contributions can vary substantially with the conformational substate of myoglobin:  

sometimes the protein contribution can even be larger than water.  Both Nilsson and Halle 64 

and Li et al. 63 found that the protein contribution also has an ultrafast component. Li et al. 

also found that, in disagreement with the “biological water” picture, protein motion (or 

protein-water motion) was essential for the slow (~50–100 ps) time-scale Stokes shifts. This 

feature was independent of the dynamics apparent from the protein and water Stokes shift 

contributions.   

 Our results are at odds with those of Zewail, Zhong, and coworkers 35,38,39,65,66, and 

we suggest that the origins of the discrepancies lie in the methods used to compute C(t).  

More recently, Zhong and coworkers have studied the solvation of different mutants of 

apomyoglobin 66.   All of the solvation correlation functions they report decay much more 

slowly than those presented in Figure IV.2.  (We note, however, that the simulations of 

Singer and coworkers 63 are consistent with the dynamics reported in Figure IV.2.) Here, we 

evaluate various methods of constructing C(t), present new data on the solvation dynamics of 
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systems containing two different solvation probes in varying ratios, and comment on the 

consequences of using the C(t)s thus generated.    

Materials and Methods 

Coumarin 153 (C153) and Coumarin 152 (152) (Exciton Inc., Dayton, OH) were used as 

received. Methanol (HPLC grade) from Aldrich was used without further purification. Five 

sets of solutions in methanol were made with C153:C152 mole fraction ratios of:  1:0; 

0.75:0.25; 0.50:0.50; 0.25:0.75; 0:1.  The total concentration of the probe was fixed at 8x10-6 

M for all the mixtures for both steady-state and lifetime experiments.  Stock solutions of 

1x10-5 M were prepared for both C153 and C152 and then diluted in methanol to maintain 

the required mole-fractions of the probes in mixtures.  

Preparation of micellar solutions.  N-acetyl-L-tryptophanamide (NATA) (Figure IV.1) and 

the surfactant, TX-100 (reduced), were obtained from Sigma.  For experiments in micelles, 

the NATA concentration was kept at ~ 5 × 10−6 M in ~ 25 × 10−3 M TX-100 (reduced) (~100 

times CMC).  Under these conditions there is one NATA molecule for every 50 micelles 

(assuming an aggregation number of 100), to minimize aggregation.   

Steady-state experiments. Steady-state absorption spectra were obtained on a Hewlett-

Packard 8453 UV-visible spectrophotometer with 1-nm resolution. Steady-state fluorescence 

spectra were obtained on a Spex Fluoromax-4 with a 3-nm bandpass and corrected for lamp 

spectral intensity and detector response. For absorption and fluorescence measurements, a 1-

cm path-length quartz cuvette was used. Coumarin and NATA samples were excited at 407 

and 295 nm, respectively.  

Lifetime experiments. The lifetime measurements were acquired using the time-correlated 

single-photon counting (TCSPC) method, which has been described in detail elsewhere 67. 
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Recent modifications in the TCSPC experimental set-up include the replacement of NIM-

style electronics by the Becker & Hickl photon counting module Model SPC-630.  In the 

CFD channel our previous ORTEC pre-amplifier has also been replaced by Becker & Hickl 

HFAC pre-amplifier. The data were acquired in 1024 channels with a time window of 12 ns. 

The instrument response function had a full width at half-maximum (FWHM) of ~50 ps.  A 

1-cm path length quartz cuvette was used for all the time-resolved measurements.  

Fluorescence decays were collected at the magic angle (polarization of 54.7o) with respect to 

the vertical excitation light at 407 nm, with 65,000 counts at the peak channel.  

Upconversion experiments. The apparatus for fluorescence upconversion measurements is 

described elsewhere67. The instrument response function had a full width at half-maximum 

(FWHM) of 300 fs. A rotating sample cell was used.  To construct the time-resolved spectra 

from upconversion measurements, a series of decays were collected typically from 480 nm to 

570 nm at 10-nm intervals in a time window of 10 ps.  Experiments were also done on a 100-

ps time scale to ensure that complete solvent relaxation was observed.   

Methods of Constructing the Solvation Correlation Function, C(t).  Two methods of 

constructing the solvation correlation function will be discussed in detail.  In the first method, 

wavelength-resolved fluorescence transients were fit to sums of exponentials (typically 2 or 

3, as necessary to fit the data) and time-dependent spectra were reconstructed from these fits 

by normalizing to the steady-state spectra: 

∑
=

i
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),(                                                        (IV.1) 
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)(tIλ is the wavelength-resolved fluorescence decay, expressed as ∑ −
i

ii ta )/exp( τ , and 

SSI λ is the steady-state emission intensity at a given wavelength.  We have employed the 

traditional approach of fitting the time-resolved emission spectra (TRES) to a log-normal 

function 45,67,68, from which we extract the peak frequency )(tν as a function of time.  

We describe the solvation dynamics by the following normalized correlation function: 

                                                    
( ) ( )

( )
("0") ( )

t
C t

ν ν
ν ν

− ∞
=

− ∞
  .                                          (IV.2)                                 

Because C(t) is a normalized function, the accurate determination of C(t) depends upon 

accurate values for ν(“0”) and ν(∞).  ν(“0”) is the frequency at zero-time, estimated using the 

method of Fee and Maroncelli 69.  The appropriate value for ν(0) is not obtained from the 

emission spectrum obtained immediately upon optical excitation with infinite time 

resolution, even if such an experiment were possible, but that arising from the spectrum of a 

vibrationally relaxed excited state that has been fully solvated by its internal motions but that 

has not yet responded to the surrounding solvent, thus the use of the notation “0.”   Fee and 

Maroncelli 69 have described a robust, model independent, and simple procedure for 

generating this “zero-time” spectrum, ν(“0”); and we have checked its validity using a 

different method for estimating the “zero-time” reorganization energy70. 

ν(∞) is (usually71,72) the frequency at infinite time, obtained from the maximum of the 

steady state spectrum.  ν(∞) is usually given by the equilibrium spectrum.  (This is not, 

however, true in the case of very slowly relaxing solvents, as has been demonstrated in the 

case of certain ionic liquids 71,72:  here the emission spectrum at ~3 times the fluorescence 

lifetime of the probe is red-shifted to that of the equilibrium spectrum.)  The ν(t) are 
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determined from the maxima of the log-normal fits of the TRES.  In most of the cases, 

however, the spectra are broad, so there is some uncertainty in the exact position of the 

emission maxima. Thus, we have considered the range of the raw data points in the 

neighborhood of the maximum to estimate an error for the maximum obtained from the 

lognormal fit.  Depending on the width of the spectrum (i.e. “zero-time”, steady-state, or 

time-resolved emission spectrum), we have determined the typical uncertainties as follows: 

“zero-time” ~ steady-state (~ ± 100 cm−1) < time-resolved emission (~ ± 200 cm−1).  We use 

these uncertainties to compute error bars for the C(t).  Finally, in generating the C(t), the first 

point was obtained from the “zero time” spectrum.  The second point was taken at the 

maximum of the instrument response function.  

 As noted in the Introduction, Zewail, Zhong, and coworkers use a different approach 

to calculate C(t) 37-39,66.  They fit the fluorescence intensity transients, Iλ(t), to a sum of 4 

exponentials, keeping two of the longer components fixed when the solvation probes have 

biexponential lifetimes (such as tryptophan).  Thus, the Iλ(t) term is separated into two parts, 

one for solvation relaxation and the other for population relaxation; and Iλ(t)  is expressed as: 

∑∑ −− +=+=
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i
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This permits the overall TRES to be written as,  
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where the lifetime-associated emission spectra are, 
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The function,νs(t) , containing contributions from solvation and population relaxation is 

obtained from the maxima of log-normal fits to the TRES obtained from Equation IV.4. νl(t) 

is similarly obtained from Equation IV.5, and provides the contributions solely from 

population relaxation. νs(0) and νl(0) are extrapolated zero-time points obtained by setting t = 

0 in Equations IV.4 and IV.5.  The emission maximum )(tsν becomes almost equal to 

)(tlν at a time, sct , where the solvation is assumed to be complete, and is defined as scν  (the 

subscript “sc” denoting “solvation complete”).  Note that this time is not equivalent to that at 

which the spectrum attains its steady-state value.  Here, the solvation correlation function, 

C(t), is: 

scs

scs ttC
νν
νν

−

−
=

)0(

)(
)( ,                                                    (IV.6) 

Finally, by subtracting the contributions from population relaxation, )(tlν , from )(tsν , the 

expression for C(t) used by Zewail, Zhong, and coworkers is obtained:  
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Results and Discussion 

Accounting for Experimentally Unresolvable Solvation in Constructing C(t) 

While obtaining the time-resolved emission profiles is crucial to a determination of 

the time-dependent Stokes shift and an understanding of the dielectric response of the 

medium, equally crucial is the construction of the solvation correlation function.  Because 

C(t) is a normalized function, its computation and interpretation depend critically on the 

values used in its denominator for the “zero-time” and “steady-state” spectra (Equation IV.2).  
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Failure to provide accurate values for these terms can overemphasize slow events and ignore 

fast events in solvation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.3.  Normalized excitation and emission spectra of NATA in 10mM potassium 
phosphate buffer of pH 7 (solid line), acetonitrile (dashed line) and TX-100 micelle (dotted 
line).  Corresponding time zero spectra in acetonitrile and TX-100 micelle are also included.  
The construction of the “zero-time” spectrum is discussed elsewhere 14,69,70.  The overlap of 
excitation spectra in these systems indicates that their “zero-time” spectra are identical.  It is 
known that the tryptophyl absorption spectrum is relatively insensitive to environment 82, and 
this is borne out in the Figure, where the excitation spectra of NATA in water, acetonitrile, 
and micelles are essentially superimposable. 

 

The expressions for C(t) given by Equations IV.3-7 were obtained because it was 

concluded, based on earlier work such as that for subtilisin Carlsberg 35 and monellin 36, that 

aqueous solvation of tryptophan in proteins could be significantly slower than (or comparable 

to the time scales of) population relaxation.  In particular, because rapid solvation could be 

resolved for tryptophan in water, it was proposed that all the solvation in water was resolved, 
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not only for tryptophan but also for its analogs and proteins containing it 35,36.  This is a 

crucial assumption that can severely affect the interpretation of the computed C(t) if indeed 

all the solvation dynamics have not been resolved or accounted for. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.4. Lifetime decay traces ( λex = 407 nm, λem ≥ 425 nm) of five different mixtures 
of C153 and C152 in methanol.  The five traces shown are with 100:0, 75:25, 50:50, 25:75 
and 0:100 % C153:C152 mixtures. The labels given in the Figure are the percentages of 
C153 in the mixtures. The lifetime decreased consistently from 4 ns to 0.9 ns with increasing 
percentage of C152. The components of the individual lifetimes reflected the corresponding 
percentages of the coumarins in the excited state.  Because the optical densities of the pure 
coumarins at 407 nm differ only slightly, the excited state percentages for C153 were found 
to be 79.5, 53.0, and 26.5, nearly the same as the corresponding molar percentages of 75, 50, 
and 25 in the ground state.  
 
 In order to assess how much solvation may have been missed in such an experiment, 

we provide spectral parameters in Table IV.1 and spectra in Figure IV.3 for N-acetyl-L-
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tryptophanamide (NATA).  As Table IV.1 indicates, the “zero-time” spectrum obtained for 

NATA/TX-100 by Zewail and coworkers is red-shifted with respect to that obtained using 

the Fee and Maroncelli method, resulting in a total spectral shift that is about 20% smaller.   

We suggest that this 20% comprises solvation events that were unresolvable with their 

experimental apparatus.  Similarly, based upon the assumption that NATA provides a good 

model for tryptophan in proteins, we suggest that the zero-time spectrum they propose for 

subtilisin Carlsberg (30,710 cm-1 rather than 31,160 cm-1 obtained from the Fee and 

Maroncelli method) is indicative of unresolved solvation events.  Subsequent work by 

Zewail, Zhong, and coworkers, predicated, it would seem, on the evidence that these results 

provide for slow solvation, devoted considerable effort to the construction of the solvation 

correlation function 37-39,66 and led to the form of C(t) given by Equation IV.7.   

Testing C(t) Constructions with a Model Tryptophan System 

Equations IV.3-7 were conceived in order to address the peculiarities of tryptophan 

fluorescence.  Petrich et al.73,74 and Szabo and Rayner 75 have shown that the fluorescence 

decay of tryptophan is well described by a biexponential with two components of ~600 ps 

and ~3 ns, each corresponding to different spectra whose maxima are at ~335 and ~350 nm, 

respectively.   

In order to compare Equations IV.2 and IV.7 quantitatively, we exploit a model 

system that mimics tryptophan by using two coumarins having different fluorescence 

lifetimes, but similar solvation times.  The model consists of coumarin 153 and coumarin 152 

(Figure IV.1), which are mixed together in different proportions in methanol.  We use 

fluorescence upconversion spectroscopy to study the solvation dynamics, using the 
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individual coumarins in methanol as well as the binary mixtures of 75:25, 50:50 and 25:75 of 

C153:C152.     

Fluorescence lifetime measurements of five sets of C153:C152 mixtures in methanol 

are shown in Figure IV.4.  Pure C153 and C152 have single exponential lifetimes of 4.0 and 

0.9 ns respectively, whereas the mixtures have biexponential decays with the same time 

constants, whose amplitudes were proportional to their ground state population ratios, as 

indicated in Table IV.2.  The representative wavelength-resolved traces obtained on a 10-ps 

time scale from 480 to 570 nm at 10-nm intervals are presented in Figure IV.5.   

Using the approach leading to Equation IV.2 and the Fee and Maroncelli 69 method 

for obtaining ν(“0”), C(t) was computed.  The spectral positions are compiled in Table IV.3. 

The average solvation times obtained for pure C153 and C152 in methanol were 4.35 and 

5.00 ps, respectively.  That is, as expected for similar solvation probes, the solvation times 

are nearly identical within experimental error.  Furthermore, as expected, despite the 

difference in the fluorescence lifetimes of the two probes, the average solvation times of the 

probe mixtures are within the range of solvation times of the pure probes (Table IV.2).  

 The data for coumarin mixtures were also subjected to the approach leading to 

Equation IV.7.  Figures IV.6a-c provide a comparison of the C(t)s obtained from Equations 

IV.2 and 7 for three coumarin mixtures.  In each case, Equation IV.7 suggests that the 

amplitude of slow solvation is significantly greater than that provided by Equation IV.2.  

This discrepancy is clearly a result of the difference in the values of “zero-time” (Table IV.3) 

used in the respective equations.  In fact, if the Fee and Maroncelli “zero-time” is inserted 

into Equation IV.7, much better agreement of the correlation functions is obtained.   
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 As a control experiment, our C(t) for C153 in methanol obtained using Equation IV.2 

is compared with that obtained by Maroncelli and coworkers 46 in Figure IV.6d.  The 

agreement is very good, even though the time resolution of the systems used is different.  

Ours is ~ 300 fs while theirs is ~ 110 fs. The C(t) for solvation in methanol has been well 

documented.  Gustavsson et al.76 and Jarzeba et al.77 have obtained similar results.  Equation 

IV.7 clearly exaggerates the slow component of solvation in methanol.    

TABLE IV.1.  Spectral Parameters for Solvation in Various Systems 
a  

 

System νexc 
b 

ν(“0”) 
c 

ν(∞) 
c 

∆ν 
c 

λ(“0”) 
d 

λ(∞) 
d
 

NATA/hexane 37,450  32,260   3,820 

NATA/H2O 35,970 31,160 28,250 2,910 4,220 5,300 

NATA/CH3CN 35,840 31,160 29,850 1,310 4,140 4,280 

NATA/TX-100 35,970 31,160 

    30,42035 

30,310 

      29,75035 

850 

    67035 

4,010 4,600 

C153/hexane 25,770  22,370   2,100 

C153/CH3CN 23,980 21,010 19,160 1,850 2,040 2,850 

apoMb/C153 22,940 20,260 18,730 1,530 1,850 2,450 

apoLba/C153 23,200 20,660 19,060 1,600 1,840 2,590 

Subtilisin Carlsberg35  30,710 29,270  1,440    

Monellin36     960   

a All values are given in wavenumbers (cm-1). 
b The maximum of the fluorescence excitation spectrum (exc), which is equivalent to the 
absorption spectrum. 
c  The maximum of the “zero-time” spectrum, which is discussed in the text and whose 
computation is discussed in detail elsewhere 69,70.   The  ∆ν were calculated as (ν(“0”) - 
ν(∞)), unless otherwise indicated.  For monellin 36, Subtilisin Carlsberg and NATA/TX-100 
35, ν(120 ps), ν(200 ps), and ν(250 ps), respectively, are used instead of ν(∞). 
d  The reorganization energy, which is a more quantitative measure of solvation and whose 
computation is discussed elsewhere 28.  The reorganization energies cited in reference 57 were 
mistakenly obtained using spectra instead of lineshapes, and are consequently incorrect.  
Also, in this earlier cited work, a 40:1 protein to C153 ratio was used.    
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TABLE IV.2.  Solvation and Lifetime parameters for different C153/C152  

Mixtures in Methanol 

 
 

System 

 

 

Lifetime Parameters 

 

Solvation Parameters 

 
C153 
(%) 

 
C152 
(%) 

 

a1 
 

ττττ1 
(ns) 

 

a2 
 

ττττ2 
(ns) 

 

<<<<ττττf>>>>
a
 

(ns) 

 

a1 

 

ττττ1 
(ps) 

 

a2 

 

ττττ2 
(ps) 

 

a3 

 

ττττ3 
(ps) 

 

<ττττs>
b
 

(ps) 

 
100 

 
0 

   
1.0 

 
4.0 

 
4.0 

 
0.54 
 

 
0.14 

 
0.23 

 
3.4 

 
0.23 

 
15.2 

 
4.35 

 
75 

 
25 

 
0.25 

 
0.9 

 
0.75 

 
4.0 

 
3.2 

 
0.50 
 

 
0.02 

 
0.25 

 
3.0 

 
0.25 

 
13.0 

 
4.00 

 
50 

 
50 

 
0.48 

 
0.9 

 
0.52 

 
4.0 

 
2.5 

 
0.49 
 

 
0.03 

 
0.25 

 
1.0 

 
0.26 

 
17.0 

 
4.70 

 
25 

 
75 

 
0.72 

 
0.9 

 
0.28 

 
4.0 

 
1.8 

 
0.51 
 

 
0.02 

 
0.19 

 
1.1 

 
0.30 

 
14.9 

 
4.70 

 
0 

 
100 

 
1.0 

 
0.9 

   
0.9 

 
0.48 
 

 
0.02 

 
0.22 

 
1.0 

 
0.30 

 
16.0 

 
5.00 

 
a  The average lifetimes, <τf> are associated with an error bar of ± 0.2 ns based on the 
average of three measurements.   
b  Solvation time <τs> was calculated using the traditional method of C(t) calculation 
according to Equation IV.2, using the zero-time peak maxima from Fee-Maroncelli’s method 
69. 
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TABLE IV.3. Comparison of Zero-Time Spectral Positions (cm-1
) Using  

Different Methods 
 

Time Zero 

 

 

System 
 

Full Method
b
 

 

 

Approx Method
c
 

 

Difference 

of 

mid-pt
f 

 

Difference 

of 

Peak-max
f 

C153 
(%) 
 

C152 
(%) 

 

ννννs(0)
a 

Mid-
pointd 

Peak 
maximae 

Mid-
pointd 

Peak 
maximae 

  

 
100 
 

 
0 

  
20520 

 
20770 

 
20410 

 
20230 

 
110 

 
540 

 
75 
 

 
25 

 
20000 

 
21360 

 
21450 

 
21000 

 
21530 

 
360 

 
-80 

 
50 
 

 
50 

 
20120 

 
21690 

 
21710 

 
21870 

 
21160 

 
-180 

 
550 

 
25 
 

 
75 

 
20200 

 
21500 

 
21730 

 
21550 

 
21510 

 
-50 

 
220 

 
0 
 

 
100 

  
21480 

 
21760 

 
21670 

 
21790 

 
-190 

 
-30 

 
a νs(0), obtained from Equation IV.7, is the extrapolated zero-time point obtained by setting t 
= 0 in Equation IV.4 37-39,66. 
b Calculated using full Fee and Maroncelli’s method 69, where the entire zero-time spectrum 
is constructed. 
c Approximation using )()0( polarnon

em
polarnon

abs
polar
abs

polar
em

−− −−= νννν 69. 
d Mid point frequencies are calculated as νmid = (ν++ν-)/2, where ν+ and ν- are the midpoint 
frequencies at the blue and red edges of the spectrum, respectively. 
e Peak maxima of the zero-time spectrum obtained from log-normal fitting using the full Fee 
and Maroncelli procedure and are used in Equation IV.2, for the construction of C(t). 
f Differences are calculated as: (full method)-(approx. method).

 



www.manaraa.com

123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.5. Representative normalized upconversion traces for the 75:25-C153:C152 
mixture obtained at wavelengths from 480 to 570 nm at 10-nm intervals.  These traces were 
fit in two ways, one with a sum of 2-3 exponentials, and also with four exponentials, using 

exp( / ) exp( / )i i j j
i j

a t b tτ τ− + −∑ ∑ , keeping two of the longer components, τj , fixed at the 

two lifetimes of the coumarins in binary mixtures. 
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Figure IV.6. Solvation correlation functions, C(t), of (a) 75:25, (b) 50:50, (c) 25:75 (from 
top to bottom) of C153:C152 mixtures in methanol, calculated using Equation IV.2 (●), and 
using Equation IV.7 (○). The bottom most panel (d) shows the C(t) of pure C153 in methanol 
using Equation IV.2 (●) and that obtained by Maroncelli and coworkers (○).  All C(t) decays 
are fit with a sum of three exponentials and fitting parameters obtained from Equation IV.2 
are listed in Table IV.2.  From panel a-c, it can be seen that the solvation is considerably 
slower using Equation IV.7 as opposed to the approach given by Equation IV.2.  Panel d 
presents a control experiment showing good agreement of our C(t) with that of Maroncelli 
for pure C153 in methanol. 
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Approximate Methods 

Based upon the comparison above and work we have presented elsewhere 44,70,78, we 

suggest that the method of Fee and Maroncelli for obtaining the zero-time spectrum is the 

soundest available.  Its details are clearly described in their paper 69, briefly alluded to above, 

and provide the basis for the construction of an entire emission spectrum.  In this paper, Fee 

and Maroncelli also provide a simple equation for approximating the maximum of the zero-

time spectrum: 

ν Pem
 (0) = ν Pabs – (ν 

nP
abs

  –   ν nPem),                                   (IV.10) 

where P and nP refer to the position of the emission or absorption spectra in polar or 

nonpolar solvents, respectively.  In our experience, this approximation usually deviates from 

that obtained by the full method by at least a few hundred wavenumbers.  Comparisons are 

provided in Table IV.3.   Bhattacharya and coworkers use Equation IV.10 as a quick way of 

estimating the position of the zero-time spectrum 43,79, but we propose that it is no substitute 

for using the full method—especially when quantitative interpretations of C(t) are required.  

Conclusions  

 As a result of the comparisons provided above, especially in the Tables and in Figure 

IV.6, we conclude that it is unnecessary to make additional corrections for multiple lifetimes 

of the solvation probe (or probes).  Lifetime effects are automatically accounted for in the 

construction of the time-resolved spectra by means of Equation IV.1.  The only instance 

where lifetime effects are important is when the solvation time is considerably longer than 

the excited-state lifetime, that is, in circumstances where there are no photons available to 

probe the continually evolving process.  This situation occurs in highly viscous systems, such 

as glasses and ionic liquids 71,72,78,80,81.  It might also be expected to occur in very slow 
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processes in proteins, such as large amplitude conformational changes and folding and 

unfolding processes, which, however, the experiments discussed here are not designed to 

investigate. 

 While Equation IV.7 adequately reproduces the form of the solvation dynamics at 

longer times, it significantly overemphasizes its amplitude.  This is a consequence of 

underestimating the position of the “zero-time” spectrum by more than 1000 cm-1 (Table 

IV.3).  Consequently, it is possible to exaggerate the amplitudes of slower solvation 

phenomenon that may be attributed to “biological water”, water-protein interactions, or the 

protein itself. 

 We stress that C(t) is a normalized function whose form and interpretation depend 

critically upon the terms in its denominator, namely the positions of the “zero-time” and 

“steady-state” spectra, the former of which we argue is most accurately provided by the full 

method of Fee and Maroncelli 69.  Finally, we note the excellent agreement between 

experiment and theory that is emerging in the study of solvation dynamics of proteins, for 

example, our earlier study of monomeric hemeproteins, and recent work by Boxer and 

coworkers 31 and Golosov and Karplus 33.   
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Abstract 

We present a comparison of the dielectric response obtained from fluorescence 

upconversion experiments and from molecular dynamics simulations of the complexes of 

coumarin 153 with five apomyoglobins (apoMbs):  wild-type horse heart (HH-WT) and those 

of wild-type sperm whale (SW-WT); its two triple mutants, L29F/H64Q/V68F and 

H64L/V68F/P88A; and its double mutant, L29F/V68L. Comparisons between experimental 

and simulated solvation relaxation functions, C(t)s, for the wild-type proteins range from

very good to excellent.  For the three mutants we investigated, however, agreement between
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experiment and simulation was considerably inferior.  Thus, an NMR study of the complex 

of the HH-WT complex apoMb; and fluorescence energy transfer and anisotropy studies of 

the five complexes were performed to investigate the structures upon which the simulations 

were based.  The NMR measurements confirm our earlier conclusions that the C153 lies in 

the heme pocket of the HH-WT apoMb.  For the wild-type complexes, fluorescence energy 

transfer measurements provide two rise times, suggesting a definite spatial relationship 

between the two Trp donors and the C153 acceptor.  These results confirm the structural 

integrity of the wild-type complexes and validate the initial structures used for the molecular 

dynamics simulations.  On the other hand, the three mutants provided single exponential rise 

times for energy transfer, suggesting that the position of the C153 used in the simulations 

may have been in error or that the C153 is mobile on the time scale of the energy transfer 

experiment.  Fluorescence anisotropy studies also suggest that the double mutant was not 

structurally intact.  Furthermore, examination of these systems demonstrates the sensitivity of 

C153 to its environment and permits the observation of differences in the heme pockets. 

These results point to the importance of structural characterization of modified proteins used 

in studies of the dielectric response and suggest strategies for performing molecular 

dynamics simulations of modified proteins.   

Introduction 

 The study of solvation dynamics is a powerful tool for understanding the dielectric 

relaxation of solvating media.  For homogeneous dielectric fluids, solvation dynamics can be 

described by linear response theory. 1-12  A simple dielectric continuum theory13-15 adequately 

describes their dielectric response, which led to several successful comparisons between 

theory and experiments. 11,12,16,17  However, for inhomogeneous dielectric materials, such as 
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proteins, dielectric fluctuations are severely restricted due to the inherent constraints of the 

materials.  The delicate balance in the electrostatic interactions play important role to control 

structure, function and dynamics in proteins.18-22  The nature of the interactions is 

heterogeneous because the charged and polar groups in protein can interact over long 

distances with each other and surrounding solvent molecules.  A large protein can have its 

dielectric response vary from place to place. 23-29  A sudden change in the charge distribution 

for many elementary processes such as electron and energy transfer in a protein causes 

dielectric relaxation due to the adjustment of its structure in response to the new charge 

distribution. Traditional dielectric continuum theory assumes that there is only one intrinsic 

microscopic length scale.  Hence, such theory is questionable when applied to 

inhomogeneous dielectric materials.  As a result understanding the dielectric response in 

proteins is very challenging due to the existence of different length scales of relaxation. 

 In a series of papers, 30-33 we have discussed the extensive literature on this topic and 

have suggested the utility of using the fluorescent probe, coumarin 153 (C153), to study the 

dielectric response of monomeric hemoglobins, such as myoglobin.  The choice of C153 was 

in large part inspired by the work of Cocco and Lecomte who characterized the complex of 

the fluorescent dye ANS (Figure V.1a) with apomyoglobin (apoMb) using nuclear magnetic 

resonance (NMR) spectroscopy and proved that ANS resides in the distal side of the heme 

pocket.34  Using 2D- DQF-COSY and NOESY experiments, they showed that the Ha and Hb 

protons of ANS have cross peaks with heme pocket residues such as His64, Val67, Val68, 

and Ala71.   
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Figure V.1. Structures of different probes discussed here. (a) 8-anilino-1-
naphthalenesulfonic acid (ANS), (b) 2-anilino-6-N,N-dimethylnaphthalenesulfonamide 
(ANSDMA), (c) 6-Propionyl-2-(N,N-dimethylamino)naphthalene (PRODAN), (d) 2′-(N,N-
dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid (DANCA), (e) 4-hydroxy-2,2,6,6-
tetramethylpiperidine 1-oxy (TEMPOL) and (f) Coumarin 153 (C153). 
 

We, thus, initially, considered the probe ANS, 34  for which there is a structure of its 

complex with apoMb. This probe is not, however, ideal because its absorption spectrum is 

complicated by overlapping electronic states.35  Even if internal conversion from higher-lying 

states to the lower fluorescent state is faster than solvation dynamics, as has been suggested 
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to be the case in Trp,36-39 an accurate determination of the reorganization energy40,41 based on 

the steady-state spectra becomes very difficult.  In addition, while ANS34,42 as well as other 

chromophores such as PRODAN43, DANCA,44 and ANSDMA45 (Figure V.1b-d) may bind to 

the heme pocket of apoMb, they are also capable of charge transfer in the excited state, 

which could complicate the interpretation of the fluorescence upconversion results. 46 

On the other hand, C153 is exquisitely inert, structurally rigid, and is also associated 

with a large change of dipole moment upon optical excitation.  This is why it is has been so 

extensively employed as a probe of solvation dynamics.30-33,47-59  We consequently opted for 

C153 as a probe for studying the dielectric response of proteins.  Elsewhere, we have shown 

using Job’s plot experiments that C153 binds to apoMb with a 1:1 stoichiometry with KD ≅ 

6x10-6 M.30,31   The ANS-apoMb complex is reported to have KD ≅ 3x10
-6 M.42  The 

anisotropy decay time (τrot) of C153 when bound to apoMb is 9.2 ns,
30 which is consistent 

with the slow rotational correlation time of apoMb,60 whereas free C153 exhibits a very fast 

depolarization time of ~100 ps in bulk solvent.30  More significantly, the anisotropy decay of 

bound C153 was single-exponential, which supports rigid binding of coumarin in the heme 

pocket; because single-exponential decay would not be expected for a surface bound 

chromophore.61,62   

These findings, suggesting that a 1:1, well-defined complex of C153 and apoMb could be 

formed, authorized us to perform a comparison of the solvation correlation functions 

(dielectric responses) obtained from fluorescence upconversion experiments and molecular 

dynamics simulations32 of C153 with wild-type horse heart (HH-WT) apoMb and with 

apoleghemoglobin (apoLba).   This comparison provided excellent agreement between 

experiment and theory and emboldened us to perform the similar set of comparisons 
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presented here for the complexes of C153 with four apoMbs:  those of wild-type sperm 

whale (SW-WT); its two triple mutants, L29F/H64Q/V68F and H64L/V68F/P88A; and its 

double mutant, L29F/V68L.  All of these mutant proteins do bind heme and fold to form 

stable holoproteins.  Mutations at each position have various effects on the oxygen binding 

properties of the holoprotein, and have various effects on the stability of the apoprotein.  For 

example, mutations of HisE7 to an apolar side chain lower oxygen affinity in the holoprotein, 

and increase stability to denaturation.  The effects of mutations at other positions are 

generally milder.  In general, when a polar side chain is introduced into the heme pocket, the 

resulting mutant apoprotein is less stable.   

The intent of this comparison is to initiate a detailed study of the effects of individual 

amino acids on the dielectric response with the ultimate goal of developing a new type of 

model for the response.63  The basic philosophy behind such a model is to account for the 

dielectric inhomogeneity of a protein without full atomistic details.  Our previous results 

have indicated that a model based on the polarizabilities at the residue level can offer a 

universal description for proteins' dielectric response.  

 Despite the encouraging, initial success on this path obtained with the horse heart 

system, the results for the sperm whale system revealed themselves to be more complicated.  

Although the agreement between experiment and theory was excellent for the SW-WT, the 

agreement varied for the mutants.  Our previous work suggests no reason to attribute such 

disagreement to the force fields used in the simulation but rather to question the structure of 

the complex used as the starting point for the simulation.  Thus, un esprit critique requires 

that painstaking attention be paid to structural details when comparisons are being made 
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between theory and experiment for different proteins and, in particular, the same proteins 

with slight modifications.   

Our work presents, in outline: 

1. a comparison of the dielectric response obtained from fluorescence upconversion 

experiments and from molecular dynamics simulations of the complexes of coumarin 

153 with five apoMbs (apoMbs):  wild-type horse heart (HH-WT) and those of wild-

type sperm whale (SW-WT); its two triple mutants, L29F/H64Q/V68F and 

H64L/V68F/P88A; and its double mutant, L29F/V68L; 

2. an NMR study of the complex of C153 with HH-WT apoMb (we have used equine 

myoglobin, because it contains more resolved lines (especially from histidines) 

compared to the SW-WT 64); 

3. fluorescence energy transfer and anisotropy studies of the five complexes to 

complement the NMR studies.  

We believe that this is the most thorough structural characterization to date of any 

system, whether it be based on nonnatural fluorescence probes or mutants, employed for the 

investigation of the dielectric response of proteins.  

Materials and Methods 

Coumarin 153 (C153) was purchased from Exciton Inc. (Dayton, OH) and used without 

further purification. 4-hydroxy-2,2,6,6- tetramethylpiperidinyl-1-oxy (TEMPOL) (Figure 

V.1e), deuterated water (D2O), dimethylsulfoxide (DMSO-d6) and methanol (HPLC grade) 

from Aldrich was used without further purification. Equine myoglobin (Mb) was purchased 

from Sigma.  Recombinant sperm whale myoglobins and its mutants were constructed, 

expressed, and purified as described elsewhere.65,66    
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Sample Preparation for NMR experiments    Apoproteins were prepared using a method 

described elsewhere.32,67  Protein concentrations were kept between ~ 1.5–2.0 mM for the 

NMR experiments.  Because C153 is sparingly soluble in water, a stock solution of 40 mM 

was prepared in DMSO-d6 and then added to the apoMb, keeping the stoichiometry 1:1. The 

solution was shaken for an hour and then dialyzed against 5 L pH 7.0 buffer overnight at 4oC.  

The solution was then centrifuged and concentrated using Centricon-3 (Amicon) to 0.5 mL, 

and the process was repeated four times by adding D2O for deuterium exchange.  The protein 

samples were stored at –20oC without lyophilization.  A 0.05 M TEMPOL solution was 

prepared in D2O and the appropriate microliter volume was added to a 500 µL protein 

solution and was equilibrated overnight at 4°C before doing the NMR experiments. 

Sample preparation for Fluorescence Measurements.  Concentrations of 1:1 C153/apoMb 

complexes were maintained from 5.0×10-6 to 80×10-6 M by adding microliter amounts of 

20×10
−3 
M C153/MeOH to pH 7.0 buffer, keeping the organic content < 0.3 % (v/v) in the 

final sample for all the steady-state and lifetime measurements.  The resulting solution was 

sonicated. For fluorescence upconversion experiments a stock solution of C153/MeOH was 

added to 1.2 ml of ~ 1.0×10
−3 
M apoprotein solution, keeping the organic content < 3 % (v/v) 

in the final solution with 1:1 protein to C153 ratio. The concentrations of the  apoproteins 

were determined spectrophotometrically using an extinction coefficient of 15.2 mM−1cm−1 at 

280 nm.30  All samples were equilibrated overnight at 4°C before making the steady-state or 

time-resolved measurements.  

NMR Experiments.   NMR spectra were recorded at a sample temperature of 25 °C using a 

Bruker Avance 700 spectrometer operating at a 1H frequency of 700.13 MHz and equipped 
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with a 5-mm H/C/N cryoprobe.  Experiments were done in pure deuterated solvents in 

standard 5 mm NMR tubes (Wilmad). 1D 1H and 2D 1H-1H NOESY spectra were acquired 

using standard experimental protocols. Very weak solvent saturation (B1 power of 5 Hz) was 

used during recycling delays and the NOESY mixing time to suppress the residual HOD 

signal.  For 1D spectra, 8 scans were accumulated with a sweep width of 25252 Hz (36 ppm). 

For NOESY spectra 400 time increments each consisting of 80 scans were acquired with a 

sweep width in both dimensions of 9803 Hz (14 ppm).  The NOESY mixing time was 150 

ms. 

Steady-state Measurements.  Steady-state absorption spectra were obtained on a Hewlett-

Packard 8453 UV-visible spectrophotometer with 1-nm resolution.  Steady-state fluorescence 

spectra were obtained on a Spex Fluoromax-4 with a 2-nm bandpass and corrected for lamp 

spectral intensity and detector response. For absorption and fluorescence measurements, a 3-

mm path-length quartz cuvette was used.  The steady-state spectra can be used to compute 

the reorganization energy, λ68 
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The σa,f are the absorption (or excitation) and emission spectral line-shapes, respectively.  

λ(∞) represents the total stokes-shift, which is calculated using the steady-state excitation, 

νex, and emission, ν(∞), spectra.  On the other hand, λ(“0”), which is the measure of 

intramolecular contribution and not solvent relaxation, is computed using steady-state 

excitation (νex) and calculated “zero-time” spectra, ν(“0”).  These values are collated in 

Table V.3.   
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Time-resolved Measurements.  Lifetime measurements were made using the time-correlated 

single-photon counting (TCSPC) apparatus described elsewhere.33,41  The data were acquired 

in 1024 channels with a time window of 3.33 ns.  The instrument response function had a full 

width at half-maximum (FWHM) of ~40 ps.  A 3-mm path-length quartz cuvette was used 

for all the time-resolved measurements.  Fluorescence decays were collected at the magic 

angle (polarization of 54.7o) with respect to the vertical excitation light at 266 nm, with ~ 

40000 counts in the peak channel.  To obtain the rotational dynamics of C153, samples were 

excited at 407 nm and emission was collected parallel and perpendicular to the polarization 

of the excitation light.  Anisotropy data were aquired in 1024 channels with a time window 

of 22 ns collecting 65530 counts in the peak channel.  The fluorescence upconversion 

measurements were done with the apparatus described elsewhere. 41  The instrument 

response function had a full width at half-maximum (FWHM) of 300 fs.  A rotating sample 

cell was used.  To construct the time-resolved spectra from upconversion measurements, a 

series of decays were collected, typically from 480 nm to 560 nm at 10-nm intervals, in a 

time window of 10 ps.  The wavelength-resolved fluorescence transients were fit to sums of 

exponentials (typically 2 or 3, as necessary to fit the data), and time-resolved emission 

spectra (TRES) were reconstructed as described elsewhere. 33,41  

We have employed the traditional approach of fitting the time-resolved emission 

spectra to a log-normal function 41,47,69, from which we extract the peak frequency )(tν as a 

function of time.  We describe the solvation dynamics by the following normalized 

correlation function: 
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− ∞
=

− ∞
  .                        (V.2)                                                             

Because C(t) is a normalized function, the accurate determination of C(t) depends upon 

accurate values for ν(“0”) and ν(∞).  ν(“0”) is the frequency at zero-time, estimated using the 

method of Fee and Maroncelli 70, who have described a robust, model independent, and 

simple procedure for generating this “zero-time” spectrum, ν(“0”).  We have checked its 

validity using a different method for estimating the “zero-time” reorganization energy68.  

ν(∞) is (usually71,72) the frequency at infinite time, obtained from the maximum of the steady 

state spectrum.  (This is not, however, true in the case of very slowly relaxing solvents, as 

has been demonstrated in the case of certain ionic liquids 71-73:  where the emission spectrum 

at ~3 times the fluorescence lifetime of the probe is red-shifted to that of the equilibrium 

spectrum.)  The ν(t)s are determined from the maxima of the log-normal fits of the TRES.  In 

most of cases, however, the spectra are broad, so there is some uncertainty in the exact 

position of the emission maxima. Thus, we have considered the range of the raw data points 

in the neighborhood of the maximum to estimate an error for the maximum obtained from the 

log-normal fit.  Depending on the width of the spectrum (i.e., “zero-time”, steady-state, or 

time-resolved emission spectrum), we have determined the typical uncertainties as follows: 

“zero-time” ~ steady-state (~ ± 100 cm−1) < time-resolved emission (~ ± 200 cm−1).  We use 

these uncertainties to compute error bars for the C(t).  Finally, in generating the C(t), the first 

point was obtained from the “zero-time” spectrum.  The second point was taken at the 

maximum of the instrument response function.  Fractional solvation at 300 fs is given by f300fs 

= 1 − C (t = 300 fs).   
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 Recently, we provided an analysis 33 of various methods of constructing C(t) and 

reviewed selected examples from the literature.36-38,74-79  We demonstrated that it is possible 

to exaggerate the amplitudes of slower solvation phenomenon that may be attributed to 

“biological water”, water-protein interactions, or the protein itself. 

Molecular Dynamics Simulations.   The starting configurations of sperm whale myoglobin 

(SW-WT) are from the protein DATA BANK (PDB id 1VXD) and with TIP3P water 

models.  To have a reasonable starting point for the C153-protein complex the heme is 

replaced by C153 and then energy minimization is used to obtain the starting configuration of 

the C153/apoMb complex. Standard constant pressure-temperature MD was performed using 

the ORAC package80 with the Amber force field. 81  In all simulations, short-range non-

bonded interactions were calculated up to a 10 Å cutoff, whereas long-range electrostatic 

interactions were treated by the SPME method using a very fine grid, 128 points per axis, 

with periodic boundary conditions, and Ewald convergence parameter of 0.43 Å–1.  Three 

different Nosé-Hoover thermostats were coupled to solute, solvent, and total center of mass. 

An external pressure of 0.1 MPa was applied all along the trajectory.  A five time-step 

rRESPA 37 algorithm with times of 0.5-1.0-2.0-4.0-12.0 fs was used with bond constraints on 

hydrogen covalent bonds handled by a Shake-Rattle-like algorithm. The final system was 

first equilibrated with velocity rescaling for 60 ps at 50 K and 80 ps at 300 K. Following this 

initial equilibration, we ran the system for one additional nanosecond at constant temperature 

(T = 300 K) and pressure (P = 0.1 MPa). To achieve full relaxation, the simulation box was 

entirely flexible for the first 300 ps, whereas for the remainder of the run, only isotropic 

changes of the box were allowed. 35 Finally, the system was simulated for an additional 10 ns. 

As we have demonstrated in our previous work, 30 an equilibrium configuration for C153 in 
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the heme pocket of the protein can be found and experimental measurements seem to support 

our interpretation. Using the equilibrated configuration, additional 12-ns trajectories are 

generated and are used for the calculation of solvation correlations functions for horse heart 

apoMb complexes; and 30-ns trajectories are used for the corresponding calculations for the 

sperm whale apoMb complexes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.2.  Representative fluorescence upconversion traces obtained for C153 in 
H64L/V68F/P88A apoMb mutant at the indicated wavelengths.  The decay at blue end of the 
spectrum decays faster than that of at the red end of the spectrum.  The decay at the red end 
of the spectrum shows a growing component.  The decays used to construct the time-resolved 
emission spectra were typically collected over a range of wavelengths from 480 to 560 nm at 
10-nm intervals, a total of nine decays were used to generate the time-resolved emission 
spectra, from which the C(t) values were calculated. 
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Using the charges of C153 in the ground and excited states,12 the solvation correlation 

function can be obtained within the linear response theory82 as  

( ) (0)
( )

(0) (0)

E t E
C t

E E

δ δ
δ δ

< ∆ ∆ >
=

< ∆ ∆ >
                                                     (V.3) 

where ( ) ( ) ( )E t E t E tδ∆ = ∆ − < ∆ >  and ( )E t∆ is the interaction energy difference between 

C153 in its excited state and ground state with surrounding protein and water molecules at 

time t.  The symbol <···> denotes the ensemble average in the simulation. The reorganization 

energy λ is calculated using 2( ) /2 .BE k Tλ δ=< ∆ >   For the simulations of the mutants, the 

residues of the equilibrated WT-apoMb/C153 complex are mutated to the desired amino 

acids starting from the equilibrated wild type and C153 complex structure.  Then, an energy 

minimization and 1-ns equilibration run is performed.  Using the equilibrated configuration, 

additional 30-ns trajectories are generated and are used for the calculation of solvation 

correlations functions and the reorganization energies.  

Results and Discussions 

Dielectric Relaxation of the ApoMb Complexes 

 Representative wavelength-resolved decay traces of C153/apoMb complexes are 

presented in Figure V.2.  The solvation correlation function, C(t), obtained from spectral 

reconstruction from fluorescence unpconversion traces and from molecular dynamics 

simulations for C153 in HH-WT and SW-WT apoMbs and its mutants using eq 2 and 3 are 

given in Figure V.3 and V.4.  There is remarkable agreement between the C(t)s from 

fluorescence upconversion experiments and those obtained from molecular dynamics 

simulations in the SW-WT apoMb, but deviations were observed in the mutants.  The time 

constants for the dielectric relaxation in all the systems are collated in Table V.1.  For all the 
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apoMb complexes studied here, the experimentally obtained solvation response was best fit 

to two decaying exponentials, with a significant (~60%) (Table V.1) response being 

completed within the time resolution of our experimental apparatus (~300fs) succeeded by a 

slower response, which is also consistent with the MD results. This ultrafast relaxation 

suggests that water is playing a dominant role, which is consistent with the report by Fleming 

and coworkers 40 that solvation in the lysozyme/eosin system is dominated by water.  

(Solvation in bulk water is characterized largely by an ~30-fs component and is complete in 

~15 ps. 17,83)  The remainder of the solvation can be attributed to motions of the protein 

matrix or coupled protein-water 84 motions.   The protein’s contribution to solvation should 

not be neglected.  For example, Nilsson and Halle have simulated the Stokes shift in the 

protein monellin 85 and have discussed how to separate the relative contributions of protein 

and water.  They find a significant protein component, at least 25%.  Li et al. 84 find that the 

relative protein and water contributions can vary substantially with the conformational 

substate of myoglobin:  sometimes the protein contribution can even be larger than water.  

Both Nilsson and Halle 85 and Li et al. 84 find that the protein contribution also has an 

ultrafast component.   In general, there will always be some slow relaxation due to the 

conformational motions of proteins.  In our case, the structures of C153/wild type complexes 

obtained from NMR and FRET measurements are consistent with those obtained from 

simulations.  For the mutants, the structures of the C153 complexes used in the simulations 

are not that certain, as indicated by the comparison with the experimental evidence.  This 

may be the reason for less satisfactory agreements between the C(t)s.  
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TABLE V.1. C(t) parameters obtained from upconversion experiments and MD simulations a 
 

 

System 

  

f300fs 

 

 

a1 

 

ττττ1 

(ps) 

 

a2 

 

ττττ2 

(ps) 

 

a3 

 

ττττ3 

(ps) 

 

<ττττsolv> 

(ps) 

Expt. 0.64 0.59 0.02 0.41 3.4   1.4 HH-WT 

Simul.  0.73 0.14 0.27 9.3   2.6 

Expt. 0.61 0.69 0.14 0.31 15.2   4.8 SW-WT 

Simul.  0.53 0.07 0.18 1.16 0.29 15.0 4.7 

Expt. 0.56 0.61 0.12 0.39 15.4   6.1 L29F/H64Q/V68F 

Simul.  0.47 0.07 0.17 1.6 0.34 28.0 10.3 

Expt. 0.64 0.68 0.12 0.32 5.5   1.8 H64L/V68F/P88A 

Simul.  0.43 0.06 0.18 1.0 0.39 40.0 15.8 

Expt. 0.60 0.60 0.10 0.40 3.8   1.6 L29F/V68L 

Simul.  0.38 0.06 0.16 1.1 0.46 52.0 23.2 

 
a Results from experiments and simulations are fit to a sum of exponentials.  That three 
exponentials are used to fit the results from simulations and only two, those from 
experiments, is a consequence of the error bars for the experimental results being larger than 
those for the data points resulting from the simulations. 
 

 Another example of agreement between experiment and theory that has emerged in 

the study of solvation dynamics of proteins is the recent work by Boxer and coworkers 86 and 

by Golosov and Karplus .87  In our previous reports32 on solvation dynamics in HH-WT 

apoMb and apoLba (where the heme pockets differs significantly88,89), we have also found 

excellent agreement between the C(t) obtained from both experiments and molecular 



www.manaraa.com

149 

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

C
(t
)

Time (ps)

 SW-WT (simul.)
 SW-WT (expt.)
 HH-WT (simul.)
 HH-WT (expt.)

dynamics simulations.  It is significant that the only difference between the heme pockets of 

the two WT Mbs is that Val67 in HH is replaced by Thr in SW.  A close comparison of the 

C(t)s for these two systems indicates small but significant differences  that must arise from 

this single amino acid substitution (Figure V.3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V. 3.  Comparison of C(t) for C153 in wild type sperm whale and horse heart apoMb 
obtained from fluorescence upconversion experiments with those from molecular dynamics 
simulations.  In both proteins, the initial fast component occurs within the time resolution of 
our instrument.  There is a remarkable agreement between experiment and theory for both the 
wild type apoproteins.  There is only one change between the heme pockets of the horse heart 
and sperm whale myoglobins:  Val67 in HH is replaced by Thr in SW.   
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Figure V.4.  Comparison of solvation correlation functions, C(t) for C153 in sperm whale 
apoMb mutants obtained from fluorescence upconversion experiments (closed circles) with 
those obtained from molecular dynamics simulations (open circles).  C(t)s from experiments 
and simulations were calculated using eqs 2 and 3 respectively, and were fitted with a sum of 
two and three exponentials respectively. 
 

 The sensitivity of C153 to its local environment is also reflected by the reorganization 

energies for each of the C153/apoMb complexes.  The reorganization energies differed not 
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only between the WT and its mutants, but also between the two WT apoMbs (sperm whale 

and horse heart, Table V.3).  The solvation response is thus critically dependent on the 

environment that the probe (C153) experiences inside the heme pocket.   

While there is very good agreement between experiment and simulation for the wild-

types proteins, the agreement for the mutant proteins is much less satisfactory.  The origin of 

this discrepancy for the mutants may be found by means of the structural studies of the 

complexes that we now discuss.   

 

 

 

 

 

 

 

 

 

 

 

Figure V.5.  Representative 1D, 1H-NMR spectra of (a) equine apoMb and (b) its complex 
with 2 equivalents of TEMPOL in D2O at 298 K and pH 7.0.  Addition of TEMPOL 
selectively broadens signals (indicated by arrows) from Cε H of His64 and Cζ H of Phe33 in 
the heme pocket, which confirms that the paramagnetic dye binds to the distal side of the 
pocket 
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Figure V.6.  Representative 1D 1H-NMR spectra of (a) the 1:1 complex of C153/equine 
apoMb. A new peak at 6.04 ppm arises due to the proton (Hx, Figure V.1f) adjacent to the 
carbonyl carbon in C153; (b) the complex of C153/equine apoMb with two equivalents of 
TEMPOL in D2O at 298 K and pH 7.0.  There is no perturbation in either the His64 or the 
Phe33 signals (indicated by arrows) as was seen in Figure V.5.  The two spectra ‘a’ and ‘b’ 
are almost identical, which indicates that coumarin occupies the heme pocket and prohibits 
the entry of TEMPOL. 
 

Structural Characterization of the Complex of C153 and HH – WT ApoMb by NMR 

One-dimensional 1H-NMR spectra of HH-WT apoMb and of the complex of two 

equivalents of the paramagnetic dye, TEMPOL (Figure V.1e), with one equivalent of apoMb 

in D2O are shown in Figure V.5.  Although the overall spectral characteristics remain similar, 

specific signals are perturbed upon addition of TEMPOL.  In particular, the peak at 7.91 ppm 

arising from Cε H of His64 in the E7-helix is broadened upon insertion of TEMPOL.  Also 

the peak due to Cζ H of Phe33 is broadened, which is consistent with the reports of Cocco 
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and Lecomte.34  Excess addition of TEMPOL, beyond two equivalents, was avoided to 

prevent attenuation of other signals by through-space relaxation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.7.  NOESY spectrum of C153/apoMb complex in D2O at 298 K and pH 7.0.  The 
resonance at 6.04 ppm arises from Hx C153, and the cross peaks arise from Val67 and Ala 
71. Other weaker cross peaks are unidentified.  The assigned cross peaks show that C153 is 
in the distal side of the heme pocket, constituted by Leu29, His64, Val67, Val68, and Ala71. 
 

When, however, C153 is added to apoMb, several signals are seen to have sharpened 

and shifted as seen in Figure V.6a, which indicates a decreased rate of backbone amide 

exchange and a change in the population of various conformers.  A new peak at 6.04 ppm 

arises in the C153-apoMb spectrum due to the proton (Hx, Figure V.1f) adjacent to the 
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carbonyl carbon in C153.  Other signals from coumarin could not be resolved due to their 

overlap with other signals from the apoprotein residues.   

When TEMPOL was added to the C153/apoMb complex, no changes in the signals 

from pocket residues, such as His64 and Phe33 were observed as was the case when adding 

TEMPOL to apoMb (Figure V.6b).  The peak at 7.45 ppm is considerably broadened on 

addition of TEMPOL in both cases (with and without C153) showing that it arises from a 

solvent exposed residue.  These observations collectively suggest that C153 provides certain 

rigidity to the flexible structure of the apoprotein and thus prevents TEMPOL from diffusing 

inside the heme pocket.  This is consistent with our circular dichroism results reported 

elsewhere30 which showed that addition of C153 helps to regain some of the secondary 

structure present in the native holo form of myoglobin.   

Based on the assignments of Lecomte34,64,90-95 and coworkers, we have assigned 

selected NOEs from the heme pocket residues in the 2D NMR spectra.  Comparing the 

spectra of apoMb with that of the C153/apoMb complex, new cross peaks can be interpreted 

as follows (Figure V.7).  The resonance at 6.04 ppm arises from the proton (Hx, Figure V.1f) 

adjacent to the carbonyl carbon in C153, which has cross peaks with methyl protons of Val67 

and also with those of Ala71.  The peak at 7.93 ppm from Cε H of His64 is sharpened and 

slightly shifted downfield on addition of C153.  His64 shows strong NOEs with methyl 

protons of Val67 and Leu29 at 0.89 and 1.70 ppm, respectively.  C153 selectively perturbed 

the residues on the distal side of the heme pocket.  A complete characterization of the apoMb 

structure is very difficult owing to its large size, partial unfolding, and exchange among 

different conformations.  Chemical shifts, internuclear distances, NOEs, and dihedral angles 

are inadequate to provide correlation between various motions and interchanging 
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conformations, because although the global unfolding of the apoprotein is cooperative, the 

local motions, like folding-unfolding processes occurs independently.64,94,95  Moreover 

chemical shift degeneracy of various protons hinder the assignments of peaks in the NMR 

spectra.      

 
Figure V.8.  Representative diagram of apoMb, constructed by the removal of the heme from 
wild-type equine holo myoglobin (1WLA.pdb), showing the interactions of C153 proton with 
Val67 and Ala71, along with other selective interactions among the distal residues such as 
His64–Leu29 and His64–Val67 as obtained from NMR studies.  
 

Based on the above 1D- and 2D-NMR results, a tentative location of C153 can be 

obtained. Considering the NOEs of coumarin with the pocket residues and inter-residue 

interactions, it can be confirmed that the fluorescent dye (C153) occupies the distal side of 

the heme pocket, similar to the case of ANS, as shown in Figure V.8, which illustrates the 

approximate distances and location of C153 with respect to the distal heme pocket residues.  
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The Hx proton of C153 is < 5 Å from the methyl residues of Val67 and Ala71.  Accurate 

determination of inter-proton distances using the NOE cross peak intensity is unreliable95 

because of the rapid to intermediate time scales of exchange among the related 

conformations within the apoprotein.      

   

TABLE V.2. Summary of Results for C153/apoMbsa 
 

Anisotropy
b
  Lifetime

c,d
   

 

System 
 

r(0) 

 

 

ττττrot 
(ns) 

 

a1 

 

ττττ1 
(ns) 

 

a2 

 

ττττ2 
(ns) 

 

a3 

 

ττττ3 
(ns) 

 
HH WT 

 

 
0.29 

 
9.2 

 
1.0 

 
5.1 

 
-0.13 

 
0.2 

 
-0.23 

 
0.5 

 
SW WT 

 

 
0.32 

 
10.5 

 
1.0 

 
5.0 

 
-0.18 

 
0.42 

 
-0.22 

 
0.1 

 
L29F/H64Q/V68F 

 

 
0.32 

 
10.2 

 
1.0 

 
5.0 

 
-0.18 

 
0.25 

  

 
H64L/V68F/P88A  

 
0.28 
 

 
10.0 

 
1.0 

 
7.3 

 
-0.33 

 
0.17 

  

 
L29F/V68L  

 

 
0.18 

 
>20.0 

 
0.84 

 
5.5 

 
0.16 

 
0.84 

 
-0.27 

 
0.25 

 
a All experiments were repeated at least three times. 
b Error bars for r(0) and τrot are within 3-5%.  The fluorescence anisotropy is measured by 
probing the C153:  λex = 407 nm; λem ≥ 500 nm. 
c Lifetime experiments were done at λex = 266 nm, λem ≥ 500 nm and components varied 
within a range of 10%. 
d Components with negative amplitude refer to the growth in the fluorescence decay traces of 
C153 observed at 266 nm excitation in all the apoMb complexes, which was completely 
absent using 407 nm excitation.  The rise time can originate only from the acceptor (C153) 
emission and indicates energy transfer from Trp to C153.  The decay time constants are 
associated with positive amplitudes. 
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Figure V.9.  (a) Steady-state fluorescence spectra (λex = 266 nm) of WT horse–heart apoMb 
with (- - -) and without C153 (–––).  The peak maxima at 330 and 530 nm are due to Trps 
and C153. Addition of C153 into the heme pocket quenches the Trp fluorescence in apoMb, 
indicating energy transfer from Trp to C153. (b) Spectral overlap of C153 molar extinction 
coeffient (ε) (green) and tryptophan emission (black) in the 1:1 WT equine apoMb/C153 
complex.  The calculated R0 is 25.5 and 27 Å for Trp14 and Trp7.  The distances, R, between 
Trp14 and Trp7 from C153 are 17.3 and 20.1 Å, respectively. 
 

Characterization of the Complexes of C153 and ApoMbs by Fluorescence Energy 

Transfer and Fluorescence Anisotropy 

Fluorescence Energy Transfer.  In order to characterize the C153/apoMb complexes further, 

we performed steady-state and time-resolved fluorescence energy transfer experiments.  
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Figure V.9a presents quenching of the donor (D), Trp, fluorescence from apoMb 

( 11.0=Φ ApoMb
Trp ) after insertion of the acceptor (A), C153, into the heme pocket 

( 09.0/153 =Φ ApoMbC
Trp ).  The fluorescence quantum yield of Trp (ΦTrp) in apoMb was calculated 

using Trp in buffer (pH 7.0) as a standard. 62,96,97  There is significant overlap of the Trp 

emission and C153 absorption spectra (Figure V.9b), which is a critical factor in energy 

transfer between D and A.  When excited at 266 nm, a shortening of the Trp lifetime was 

observed in all the C153/apoMb complexes (τ = 2.0 ns), compared to the lifetime in the free 

apoproteins (τ = 2.3 ns).  The fluorescence lifetime of C153 in the apoMb complexes was 

also monitored exciting at λex = 266 and 407 nm and λem ≥ 505 nm.  Excitation at 407 nm 

only excites the acceptor (see Figure V.9) resulting in its prompt fluorescence since no 

energy transfer can occur.  Figure V.10 presents the time-resolved fluorescence decays of 

C153/apoMb complexes when Trp and C153 are selectively excited.  The sets of decays are 

clearly different when excited at 266 and 407 nm. Upon exciting at 266 nm, significant 

growth in the fluorescence decay traces of C153 was observed in all the apoMb complexes, 

which was absent completely at 407 nm excitation. The rise time can thus, originate only 

from the acceptor (C153) emission and indicates energy transfer from Trp to C153. 

A crucial result in helping us to characterize the C153/apoMb complexes is that for 

the wild-type complexes two exponentials were required to fit the rise times adequately 

(Table V.2 and Figure V.10).  It is reasonable to observe two rise times for the energy 

transfer since the apoMbs have two Trps (Trp7 and Trp14) and energy transfer from two 

Trps at different distances from C153 can lead to two different rise times (Table V.2).  But 

more importantly for purposes of the structural characterization, this result also implies that 
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Figure V.10.   Fluorescence decay traces of complexes of C153 with HH-WT and SW-WT 
apoMbs, and the mutants of the latter.  λex = 266 nm (black) or λex =  407 nm (red).  λem ≥ 
500 nm.  Upon exciting at 266 nm, a rise in the fluorescence decay traces of C153 was 
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observed in all of the apoMb complexes.  This rise was absent for λex = 407 nm.    All the 
measurements were repeated three times. Data for the HH samples were acquired in 4096 
channels, whereas the rest were taken in 1024 channels.  The residuals from the fits for wild 
type HH and SW are shown.  In each pair, the residuals in the upper panel and in lower panel 
are obtained from single (χ2 > 2.5) and bi-exponential fits (χ2 ~ 1.3), respectively.  Decays for 
all of the mutants are best fit with a single exponential (χ2  ≤ 1.3).  The results are collated in 
Table V.2. 
 

C153 is rigidly bound inside the heme pocket at a fixed orientation and that it is immobile 

within the time-scale of the experiment.  On the other hand, the three mutants all provided 

single exponential rise times for the energy transfer.  Such a result can be interpreted in at 

least three ways:  1) R6/κ2 is the same for C153 and each of the two Trps (assuming a fixed 

dipole moment for C153); 2) the position and orientation of C153 only favors energy transfer 

from a single Trp residue; 3) the mutants proteins are not correctly folded and there are 

multiple C153 binding sites or the C153 is mobile on the time scale of the energy transfer 

giving rise to a averaged time constant.     

Quantitative structural details can be gleaned from the energy transfer data by 

computing the critical distance, R0, between the Trps and C153: 
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where ETk  is the rate of energy transfer, τD is the average fluorescence lifetime of the donor, 

R is the distance between donor and acceptor, κ2 is the orientation factor, n is the index of 

refraction of the medium (considered as 1.33), N is Avogadro’s number, ΦD is the 
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fluorescence quantum yield of the donor, FD is the emission spectrum of the donor on a 

wavenumber scale, and εA is the molar extinction coefficient of the acceptor (M
-1cm-1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.11.  (a) Geometry used to calculate κ2 for the determination of R0 for the energy 
transfer between Trp and C153 in the complexes.   The figure presents the mutual orientation 
of the donor transition dipole of Trp, θD, and the acceptor transition dipole of C153, θA.  R is 
the separation vector between the donor and acceptor. κ2 is calculated using eqn 6.  θA is 
fixed at 21°, along the dipole moment of C153; and the donor is assumed to be isotropically 
oriented. The angles θD and φ are thus integrated over the range of 0–π and 0–2π, 
respectively.  This geometry gives κ2 = 5/4.  (b) The D–A distances from the equilibrated 
structures from the molecular dynamics simulations are computed with respect to the atoms 
illustrated.  Distances obtained from energy transfer results and from simulations are 
summarized in Table V.4.   
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A thorny problem in using energy transfer data to determine distances is obtaining an 

appropriate value for κ2.  Typically it is assumed that D and A can move freely and assume 

all orientations, in which case κ2 = 2/3.  This is clearly incorrect for the C153/apoMb system, 

where there is ample evidence suggesting that C153 is rigidly held in the heme pocket, at 

least for the wild type proteins.  We have thus assumed that D is randomly orientated and that 

A is fixed at the angle θA with respect to the separation vector between the D and A, as 

shown in Figure V.11.  Various orientations between donor and acceptor have been discussed 

in detail by Dale and Eisinger.98  For further simplicity, we assume that C153 is oriented 

along its transition dipole moment vector, θA=21°. 
47  This is a reasonable and convenient 

assumption.  The NMR data were not sufficient to permit the determination of the location of 

the coumarin’s plane inside the heme pocket.  If, however, the location of the C153 plane is 

undetermined to within a rotation about its transition dipole, κ2 remains unchanged.  Using 

the equation  

[ ]22 sin sin cos 2cos cosD A D Aκ θ θ ϕ θ θ= −                                          (V.6) 

we thus obtain κ2 = 5/4.  The overlap integral was calculated using the emission spectra of 

single Trp mutants of apoMb99 and the absorption spectrum of C153 in WT apoMb.  Finally, 

eqs 4 and 5 yielded R0 as 25.5 and 27.0 Å for Trp14 and Trp7 in the HH-WT complex, using 

the quantum yields of Trp14 and Trp7 as 0.14 and 0.19, which were calculated from the ratio 

of the lifetimes of the individual Trps. 100  The distances, R, from Trp14 and Trp7 to C153 

were thus determined to be 17.3 and 20.1 Å, respectively.  For the SW-WT complex, the 

Trp-C153 distances were found to be 14.4 and 18.4 Å, which are significantly different from 

HH-WT complex.  The distances obtained from energy transfer experiments have been 
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compared with those in equilibrated simulation structures in Table V.4.  Unlike the case of 

the mutants, there is reasonably good agreement for the Trp–C153 distances determined by 

experiment and simulation in the wild type proteins.  The differences in the location of C153 

in the heme pockets of the two WT apoproteins, is also reflected in the reorganization 

energies and solvation correlation functions.   

 In concluding this section, it is well to note that other workers have studied the very 

efficient energy transfer from tryptophan to heme in myoglobin and place our measurements 

and analysis in this context.  Hochstrasser and Negus 101 provided a detailed analysis of 

energy transfer between Trps 7 and 14 to the heme in sperm whale myoglobin.  They agree 

with our assessment that these two Trps are close to the exterior of the protein.  They also 

conclude that the directions of the tryptophan transition moments are probably not a critical 

factor for the energy transfer.  This conclusion is consistent with our assumption that the Trps 

are randomly distributed.  They do, however, invoke anisotropy data to suggest that Trp 14 is 

restricted enough to transfer energy to the heme with a time constant of 30 ps.  More 

recently, Zhong and coworkers 102 have extended these studies.  They conclude that for 

ultrafast energy transfer, it is incorrect to assume that that the donor and acceptor are 

randomized. 

 We recognize that it is a gross approximation to assume that the Trps are completely 

randomly distributed.  But we feel that it is a useful approximation and that it is unnecessary 

in the present case to assume that the Trps are not randomized.  The point of our energy 

transfer experiments is not to assay the rigidity of the tryptophans but to verify the location of 

the coumarin, which is crucial for a proper comparison with simulations.  The most 

important results of our experiments are that for the WT systems we clearly resolve two
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Figure V.12.  Polarized fluorescence decays of the complexes of C153 with wild type sperm 
whale apomyogobin and its mutants.  λex = 407nm; λem ≥ 500 nm.  A normalization factor 
was applied to the traces such that the maximum count was 10000 owing to the requirements 
of the analysis software.  The anisotropy measurements were repeated three times. The 
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rotational reorientation times were obtained from simultaneous fitting103 of parallel and 
perpendicular decays, and the results are summarized in Table V.2.  The top panels present 
the residuals from the fits (χ2 ~1.2).  
 

different energy transfer events and that the distances computed from these time constants 

are consistent with distances obtained from the simulations. 

Fluorescence Anisotropy.  Time-resolved fluorescence anisotropy data for C153/apoMb 

complexes are presented in Figure V.12.  The anisotropy decay of bound C153 in WT and 

the two triple mutants was single exponential with a rotational time of ~10 ns (Table V.2), 

which supports rigid binding of the probe in the heme pocket; because a single-exponential 

decay would not be expected for a surface bound chromophore. 61,62  The r(0) values for 

these systems were found to be similar (~0.3).  These results are consistent with our previous 

reports with HH-WT apoMb, which was single exponential with a rotational time of 9.2 ns.  

On the other hand, the double mutant L29F/V68L showed a much higher rotational time (>20 

ns), with a significantly lower r(0) of ~0.2.  These two values clearly impugn the structure 

integrity of the double mutant.  The higher rotational diffusion time could arise from 

aggregation or improper folding of the protein.  The reduced limiting anisotropy could arise 

from multiple binding sites of the C153.    

Comparison of the Experimental and Simulated C(t)s  

As suggested earlier, the origin of this discrepancy between the experimental and 

simulated C(t)s for the mutants may be found from structural studies of the complexes.  From 

a comparison of the C153-Trp distances obtained from equilibrated simulation structures and 

energy transfer experiments (Table V.4) and from the NMR measurements, it appears that 
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the structural features for the C153/WT complex obtained from simulations and experimental 

measurements are in reasonable agreement.  Again, this is not the case for the mutants.  

TABLE V.3.  Steady-State parameters for C153/apoMb Complexes  
 

System max
emν a

 

cm
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cm
-1
 

max
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cm
-1
 

)"0("λ b,

c
 

cm
-1
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c
 

cm
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)"0(")( λλ −∞
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cm
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.simulλ
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cm
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HH WT 

 

 
22940 

 
20260 

 
18730 

 
1850 

 
2450 

 
600 

 
888 

 
SW WT 

 

 
18970 

 
20322 

 
22910 

 
1815 

 
2453 

 
638 
 

 
715 

 
L29F/H64Q/

V68F 
 

 
19160 

 
20307 

 
22840 

 
1786 

 
2355 

 
569 

 
1094 

 
H64L/V68F/

P88A 
  

 
19690 

 
20660 

 
23360 

 
1847 

 
2450 

 
603 

 
1252 

 
L29F/V68L  

 

 
19360 

 
20600 

 
23090 

 
1743 

 
2390 

 
647 

 
755 

 
a  Peak maxima are obtained from log-normal fits of the spectra.  
b  λ values from experiments are calculated using eq. 1 and have an error of ± 5 cm-1 as 
determined from 3 different measurements. 
c )(∞λ is the total Stokes shift including intramolecular and solvent contribution, whereas 

)"0("λ  exclusively estimates the intramolecular vibrational contribution to the total Stokes 

shift. Their difference, )"0(")( λλ −∞ , is commensurate with that obtained from 

simulations, .simulλ , calculated as TkE B2/)( 2 >∆=< δλ  and which only accounts for the 

dynamic Stokes shift due to solvent contribution or relaxation. 
 

The way in which the initial structures for the simulations are determined may 

provide a clue for understanding such discrepancies.  For the wild type, the apo structure is 

obtained directly from the protein data bank, presumably the same structure as the one used 
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in the experimental measurements.  On the other hand, the initial structures of the mutants 

are obtained from simple site mutations in the presence of the coumarin in the heme pocket.   

TABLE V.4.  Distances from Trp7 and Trp14 to C153 in the Complexes 
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15.9 

 
L29F/V68L 

 

 
18.1 

 
12.1 

 
25.9 

 
24.4 
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17.2 

 
All distances are in Angstroms. 
a Distances between C153 and Trp are obtained from the equilibrated structures as shown in 
Figure V.11b.  
b R0 is the so-called “critical distance” distance between donor and acceptor defined by eqs 4 
and 5. 
c R is the distance from the center of mass of donor (Trp) and acceptor (C153) as shown in 
Figure V.11a. 
 

This construction of the initial complex for the wild type proteins is different from 

those for the mutant complexes.  More precisely, the construction of the mutant complexes 

for the simulations is not analogous to the preparation of the complexes for the experimental 

measurements.  In the latter, the mutant protein is first expressed and the heme is removed, 

C153 diffuses into the heme pocket, and the heme pocket relaxes around the coumarin.  In 
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other words, the mutation and apoprotein formation and the subsequent introduction of the 

C153 correspond to two different equilibration steps in the molecular dynamics simulations.  

Indeed, the structures from simulations for the two wild type C153/apoMb complexes are in 

reasonable agreement with the experimental observations (Table V.4), but the structures for 

the mutants are not.   

One possible way to check this argument is to equilibrate the mutant apoprotein first 

and then insert the coumarin into the heme pocket with the initial structure being consistent 

with the energy transfer and NMR measurements.  From such initial structures of the mutants 

the reorganization energies and solvation correlation functions from simulations could be 

tested against the experimental ones.  Another possible way to test the reliability of the 

mutant complex structure is annealing, namely raising the simulation temperature to 500 K 

for some time, and then cooling the system down to 300 K to equilibrate for 10 ns.  For the 

HH-WT/C153 complex, an annealing was done at 500 K for 3 ns and an equilibration at 300 

K for 10 ns.  There was no significant change for the structure of the complex.  

 Conclusion 

 We have continued to explore the use of the complex of C153 and apoMbs to study 

the protein dielectric response 30-33, which has proven to be extremely successful.  

Comparisons between experimental and simulated C(t)s for wild-type heme proteins, such as 

horse heart myoglobin,32,33 leghemoglobin,32,33 and sperm whale myoglobin range from very 

good to excellent.  Furthermore, examination of these systems demonstrates the sensitivity of 

C153 to its environment and permits the observation of differences in the heme pockets 

among these three proteins.  Perhaps most impressive is that we can detect changes in C(t) 
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arising from only one change between the heme pockets of the horse heart and sperm whale 

myoglobins:  Val67 in HH is replaced by Thr in SW (Figure V.3).   

Our success with the wild-type proteins encouraged us to study mutant sperm whale 

myoglobins.  For the three mutants we investigated, however, agreement between experiment 

and simulation was considerably inferior to that for the wild-type systems.  Our previous 

work suggests no reason to attribute such disagreement to the force fields used in the 

simulation but rather to question the structure of the complex used as the starting point for 

the simulation.  Thus painstaking attention must be paid to structural details when 

comparisons are being made between theory and experiment for different proteins and, in 

particular, the same proteins with slight modifications.  We consequently performed an NMR 

study of the complex of C153 with HH-WT apoMb, along with fluorescence energy transfer 

and anisotropy of all of the horse heart and sperm whale complexes to complement the NMR 

studies.   

The NMR measurements provide important confirmation of our earlier conclusions 30-

33 that the C153 lies in the heme pocket of the HH-WT apoMb.  For the wild-type complexes, 

fluorescence energy transfer measurements provide two rise times, suggesting a definite 

spatial relationship between the two Trp donors and the C153 acceptor.  On the other hand, 

the three mutants all provided single exponential rise times for the energy transfer.  Such a 

result can be interpreted in at least three ways:  R6/κ2 is the same for C153 and each of the 

two Trps (assuming a fixed dipole moment for C153); or the position and orientation of C153 

only favors energy transfer from a single Trp residue; or the mutants proteins are not 

correctly folded and there are multiple C153 binding sites or the C153 is mobile on the time 
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scale of the energy transfer giving rise to a averaged time constant.  Fluorescence anisotropy 

studies suggest that the double mutant was not structurally intact. 

It is important to stress that the rather poor agreement between simulation and 

experiment for, at least the triple mutants, is not a suggestion that it is not possible to identify 

the contribution of a single amino acid to the dielectric response.  We reiterate that for HH-

WT apoMb and apoLba (where the heme pockets differs significantly88,89), we have found 

excellent agreement between the C(t) obtained from both experiments and simulations, and it 

is also significant that the only difference between the heme pockets of the two WT Mbs is 

that Val67 in HH is replaced by Thr in SW.32,33  The mutant results point, rather, to the 

importance of the structural characterization of modified proteins used in studies of the 

dielectric response and suggest strategies for performing molecular dynamics simulations of 

modified proteins—i.e., starting perhaps with (limited) NMR data and employing more than 

one equilibration step.  We believe that ours is the most thorough structural characterization 

to date of any system, whether it be based on nonnatural fluorescence probes or mutants, 

employed for the investigation of the dielectric response of proteins.  
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CHAPTER VI.  ENZYME CATALYZED HYDROLYSIS OF CELLULOSE IN IONIC 

LIQUIDS:  A GREEN APPROACH TOWARDS THE PRODUCTION OF BIOFUELS 

 

A paper published in the Journal of Physical Chemistry B 

 

Sayantan Bose1, Daniel W. Armstrong2, and Jacob W. Petrich1,* 

 

Abstract 

We investigated the reactivity and stability of a commercial mixture of cellulases in 

eight ionic liquids by optical and calorimetric techniques.  First, hydrolysis by cellulases 

from Tricoderma reesei in these ionic liquids was benchmarked against that in aqueous 

buffer.  Only 1-methylimidazolium chloride (mim Cl) and tris-(2-hydroxyethyl)-

methylammonium methylsulfate (HEMA) provided a medium in which hydrolysis could 

occur.  While hydrolysis at 65˚C is initially much faster in buffer than in these two liquids, it 

reaches a plateau after two hours; whereas, the reaction progresses monotonically in the two 

ionic liquids.  This difference in the rate of hydrolysis is largely attributed to two factors:  1) 

the higher viscosity of the ionic liquids; 2) the enzymes are irreversibly denatured at 50˚C in 

buffer while they are stable to temperatures as high as 115˚C in HEMA.  We explore
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whether fluorescence quenching of aromatic amino acids of the enzymes was indeed a 

signature of protein denaturation, as has been suggested in the literature and concluded that 

quenching is not necessarily associated with denaturation.  When it does occur, for example, 

in the presence of ionic liquids formed from imidazolium cations and chloride anions, it 

arises from the imidazolium rather than the chloride.  Finally, we conclude that HEMA is a 

promising, novel, green medium for performing cellulose hydrolysis reactions to convert 

biomass into biofuels.  Because of the thermal stability it imparts to enzymes, its ability to 

solubilize biomass, and the fact that it does not quench tryptophyl fluorescence (thus 

permitting monitoring of the enzymes by fluorescence spectroscopy), HEMA provides an 

ideal starting point for the design of ionic liquids, not only for the hydrolysis of biomass, but 

for use with a wide spectrum of enzymatic reactions. 

Introduction 

Converting biomass into fuel is becoming increasingly important owing to the 

desirability of finding substitutes for fossil fuels and to the need to address the problem of 

global warming.  Cellulose, one of the main constituents of biomass, is the most abundant 

biorenewable material on the planet.  Consequently, during the past two decades, 

considerable effort has been devoted to the hydrolysis of cellulose in order to convert it into 

fuel. 1-7  There are, however, limitations to this process that are imposed mainly because of 

the limited solubility of cellulose in water or other organic solvents.   That is, cellulose is a 

linear polysaccharide chain (Figure VI.1a) consisting of hundreds to thousands of D-

anhydroglucopyranose linked together by β (1�4)–glycosidic bonds3; and this highly 
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symmetrical polymer is sparingly soluble in most solvents. Thus the traditional dissolution 

processes are not only cumbersome and expensive, but they also require extreme conditions,8  

which in turn may cause serious environmental problems because the solvents they require, 

such as LiCl/N,N-dimethylacetamide, N-methylmorpholine-N-oxide/water, 

DMSO/paraformaldehyde, etc., are not only volatile, toxic, and costly; but they also cannot 

be recovered and reused.  9,10  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure VI.1.  Structure of (a) linear polymer chain of cellulose, showing inter chain 
hydrogen bonding interactions  and (b) remazol brilliant violet dye tagged to cellulose chain 
in cellulose azure. 
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Recently, it has been reported that a special class of solvents, room temperature ionic 

liquids (RTILs), can dissolve cellulose. 9,11-19 Ionic liquids are green solvents, in contrast to 

volatile organic compounds (VOCs), owing to their high chemical and thermal stabilities, 

negligible vapor pressure,20 and high recoverability and reusability.21,22   These properties 

have piqued the interest of the scientific community, and a variety of fundamental studies23-29  

have been performed on them to obtain a better understanding of their characteristics.  

Rogers and coworkers9,15-17,30 have performed extensive studies on the dissolution of 

cellulosic materials in different ionic liquids.  They have shown that ionic liquids can be used 

as nonderivatizing solvents for cellulose. Among the different solvents they studied, 1-butyl-

3-methylimidazolium chloride (bmim Cl) was found to be most effective in dissolving 

cellulose, and they attributed this effect to strong hydrogen bonding interactions of the 

hydroxyl group with the halide anion. 9,15,30 They have also reported the dissolution of other 

lignocellulosic sources, such as wood 17 and banana pulp16,  in ionic liquids.  Sheldon and 

coworkers have shown high solubility of di- and polysaccharides in ionic liquids containing 

dicyanamide anions.12  More recently it has been found that Bombyx mori silk, fibroin 11, and 

hard and soft woods 18 are readily solubilized in imidazolium based ionic liquids.   

 Of the several steps involved in the production of ethanol from cellulose, the most 

crucial and difficult is the cellulolysis, which is the hydrolysis of the cellulose polymer chain 

into glucose units.3,5,7  Different catalysts have been used for this reaction, such as metal 

chlorides,4,6 acids, or enzymes.1,31,32  The most common and widely used enzyme for this 

saccharification of cellulose is cellulase.  In order to make the entire process of enzyme-

catalyzed hydrolysis of cellulose green, the use of ionic liquids as solvents or co-solvents has 

received growing attention.  The most thoroughly studied enzyme in ionic liquids is Candida 
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antarctica lipase B, used to catalyze transesterification reactions. 31,33,34  While the 

hydrophobic effect that increases protein stabilization is absent in organic ionic liquids, one 

advantage to biocatalysis in ILs as opposed to aqueous buffers is the longer activity of 

enzymes in ILs, which is thought to arise from the slow breaking and remaking of hydrogen 

bonds in the non-aqueous medium. 35  Studies of cellulase-induced catalysis in ionic liquids 

are, however, still limited. 5,36-39 

 The physical and chemical properties of ionic liquids vary considerably depending on 

their cation–anion pair.  Several attempts have been made to explore the activity of enzymes 

in ionic liquids, and there are various issues concerning the stability of these 

biomacromolecules in ionic liquids.  Most of them are ineffective for biocatalyis.  It has been 

suggested that ionic liquids containing the anions Cl-, Br-, NO3
-, CF3SO3

-  denature enzymes 

owing to their higher basicity and, hence, higher affinity for hydrogen bonds.22,40  There are 

diverse opinions concerning the effect of fluorinated anions, such as BF4 and PF6, on the 

enzyme’s lifetime.  Some reports suggest that since charge can be distributed over several 

fluorine atoms, the hydrogen bond affinity is minimized between the solvent and the enzyme 

and that, consequently, there is no interference with the internal hydrogen bonding network 

of the enzyme, maintaining its secondary structure. 31  On the other hand, Swatloski et al. 41 

have reported that BF4 and PF6 have a high propensity to undergo self decomposition with 

the liberation of HF, which is detrimental for the enzymes.   

One must also consider the tradeoff between viscosity and solubility.  The inherent 

high viscosity of the ionic liquids is a retarding factor for the rate of enzymatic hydrolysis, 

since it slows the diffusion of the enzyme to its target.  Viscosity increases with the length of 

the alkyl chain.  Although the highly viscous bmim Cl (Table VI.I) slows down the rate of 
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cellulase induced hydrolysis of cellulose,36 it can dissolve substantial amount of cellulose.9 

As opposed to bmim Cl, cellulose has very limited solubility in bmim PF6 and bmim BF4, 

whereas the latter keeps the enzyme active. Thus it is very challenging to find the right 

combination for the cation–anion pair that can form a compromise between the opposing 

factors of dissolving cellulose, retaining the activity of the enzymes, and having a low 

viscosity.   

Consequently, this work delves into the activity of cellulase in eight ionic liquids and 

is motivated by that of Rogers and coworkers, who studied the activity of cellulase from 

Tricoderma reesei in bmim Cl and bmim BF4. 
36  They reported that the enzymatic activity 

ceases within an hour of reaction due the presence of high concentration of chloride ions in 

the bmim Cl, whereas the activity is retained in bmim BF4.  Enzymatic activity was 

monitored as a function of time using cellulose azure (an azo–dye tagged to the cellulose 

chain), 42 which upon hydrolysis releases the dye, whose absorbance is measured as a 

signature of the progress of reaction.  In this work, we employ steady-state optical 

absorbance and fluorescence measurements as well as differential scanning calorimetry and 

thermal and microwave heating techniques to understand the stability of cellulase and its 

activity in different ionic liquids.  We found that certain ionic liquids stabilize the cellulases 

at temperatures as high as 115 ˚C whereas the enzymes are irreversibly denatured at 50 ˚C in 

aqueous buffer.   Hydrolysis in ionic liquids is slower than that in buffer, which is attributed 

to the higher viscosity of the ionic liquids.  Furthermore, while quenching of the fluorescence 

of the intrinsic amino acids of cellulases has been interpreted as a signal of protein 

denaturation (attributed to chloride ions), we demonstrate that such quenching is not 

necessarily associated with denaturation.  When it does occur, for example, in the presence of 
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ionic liquids formed from imidazolium cations and chloride anions, it arises from the 

imidazolium rather than the chloride.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.2. Structures of ionic liquids studied: (a) bmpyro NTf2, (b) bmpy BF4, (c) bmph 
OTs, (d) HEMA, (e) hdph dca, (f) bmim Cl, (g) bmim NTf2 and (h) mim Cl.  See text for 
abbreviations. 
 

Experimental Section 

Materials and Methods.  GC 220 cellulase from Tricoderma reesei (1.2g/mL) was a gift from 

Genecor International Co. and was used without further purification.  GC 220 is a 

heterogeneous mixture of several cellulase components, which includes endoglucanases and 
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cellobiohydrolases.  In the subsequent discussion, whenever we refer to “cellulase” or “the 

enzyme,” we are referring globally to the GC 220 preparation.  Cellulose azure from Sigma 

Aldrich, which although may not be used for quantitative purposes but is appropriate for 

comparative activity studies,43 was washed multiple times with deionized water to eliminate 

any unbound dye particles from the surface of cellulose, and was dried before using.  (It is 

made from purified cotton linters and then covalently tagged with remazol brilliant violet dye 

(Figure VI.1b).)  Upon hydrolysis of cellulose, the dye is solubilized and its absorbance 

reports on the activity of the enzyme.  The ionic liquids used in this study are given in Figure 

VI.2, 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane)-sulfonimide (bmpyro NTf2), 1-

butyl-4-methyl pyridinium tetrafluoroborate (bmpy BF4), triisobutylmethylphosphonium 

tosylate (bmph OTs), tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA), 

trihexyltetradecylphosphonium dicyanamide (hdph dca) and BASF grade 1-butyl-3-

methylimidazolium chloride (bmim Cl) were purchased from Sigma Aldrich.  1-

methylimidazolium chloride (mim Cl) and 1-butyl-3-methylimidazolium 

bis(trifluoromethane)-sulfonimide (bmim NTf2), were synthesized as described elsewhere. 
23  

Ionic liquids were not dried before using, since aqueous enzyme solution was introduced into 

them before performing the experiments.  Viscosity measurements were made with a 

ViscoLab 4000 piston style viscometer from Cambridge Applied system at desired 

temperatures.   

Steady State Measurements.  Steady-state absorption spectra were obtained on a Varian Cary 

100 Bio UV-visible spectrophotometer with 1-nm resolution equipped with a Peltier 

temperature controller.  All the activity measurements were done in a double-beam 

spectrometer, where both sample and reference cells were maintained at identical conditions.  
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The latter contained substrate without enzyme for automatic subtraction of the absorbance of 

the liberated dye (if any) in the absence of enzyme.  The concentration of cellulose azure was 

1.5mg/mL; and that of cellulase, 0.7mg/mL.  Steady-state fluorescence spectra were obtained 

on a Spex Fluoromax-4 with a 2-nm bandpass and corrected for lamp spectral intensity and 

detector response.  For both fluorescence and absorption measurements, a 1-cm path-length 

quartz cuvette was used.  All cellulase samples were excited either at 284 or 295 nm and 

identical spectra were obtained at both wavelengths.  In all the solvents, the enzyme was 

equilibrated for at least one hour with constant stirring at the desired temperature before the 

fluorescence measurements were done. 

Differential Scanning Calorimetry Measurements. Differential heat flow curves were 

measured using a Q 10 Differential Scanning Calorimeter (TA Instruments.), attached to a 

liquid nitrogen cooling system (LNCS).  The sample and reference pans were filled with 70 

µL of the solutions.  Cellulase in pH 4.8 citrate buffer and cellulase in ionic liquids were 

scanned from 10 to 100oC and from 10 to 150oC respectively.  The enzyme concentration 

was maintained at 2.13-4.5 mg/mL.  DSC scans were also done with pure buffer and ionic 

liquids without enzymes to ensure that no transitions occurred in the same temperature range.   

Results and Discussion 

Optical Measurements Probing Enzymatic Stability and Function 

 Steady-state fluorescence from cellulase (GC 220 obtained from the fermentation of 

the fungus T. reesei)  was monitored in eight ionic liquids at room temperature and compared 

with that obtained in pH 4.8 citrate buffer (Figure VI.3).  GC 220 consists of a mixture of 

enzymes.  In each of the enzymes, there are several tryptophans, which provide intrinsic 

fluorescent markers.  Misfolding or unfolding of the enzyme is typically accompanied by 
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quenching of fluorescence or a red shift 44 of the emission spectra.  Baker et al. have shown 

that thermal denaturation of four T. reesei components was accompanied by quenching of 

fluorescence and a red shift in the emission maxima. 45  All the ionic liquids, except HEMA, 

quenched nearly all of the cellulase fluorescence.  Interestingly, cellulase showed higher 

fluorescence in HEMA than in buffer, with retention of spectral shape.  This is consistent 

with higher stability of the enzyme in the ionic liquid at ambient conditions, but it is not a 

necessary condition for stability as we shall see below.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.3.  Steady-state emission spectra of cellulase (2.13 mg/mL) in pH 4.8 buffer and 
ionic liquids at room temperature. The samples were excited at 284 nm. Enzyme 
fluorescence is quenched in all the ionic liquids except in HEMA, which shows higher 
fluorescence than in buffer, with retention of spectral shape and peak maxima.  The numbers 
in parenthesis are the viscosities measured in centi-poise (cP) at 65oC.  The spectrum of 
cellulase in mim Cl is not visible due to superposition with other spectra. 
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Figure VI.4. (a) Cellulase activity at 65˚C as monitored via the absorbance of cellulose azure 
(1.5 mg/mL) at 575 nm in pH 4.8 citrate buffer, mim Cl, and HEMA.  In buffer, cellulase 
showed maximum activity, which is represented by higher absorbance of the liberated dye, 
compared to those in the ionic liquids.  We attribute this to the relative viscosities of the 
solvents.  On the other hand, in buffer there is almost no hydrolysis after two hours (i.e., the 
absorbance reaches a plateau), whereas, the reaction progresses monotonically in the ionic 
liquids.  (b) Hydrolysis of cellulose azure (1.5 mg/mL) monitored as a function of time, as in 
(a), in mim Cl with and without cellulase.  The red data points correspond to the absorbance 
of dye liberated only due to hydrolysis by cellulase, whereas almost negligible hydrolysis 
(black) was observed without the enzyme. 
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Figure VI.5. Stern–Volmer quenching plot of tryptophan in pH 7.0 buffer with 1-
methylimidazole., where F and F0 are the fluorescence intensities with and without quencher.  
The samples were excited at 284 nm.  The inset shows a decrease of the fluorescence 
intensity of tryptophan with increasing quencher concentration, indicated by the downward 
arrow.  The data points were fit to two straight lines to obtain the Stern–Volmer quenching 
constants (Ksv), which were found be 3.8 and 89 M

-1.  (b) Representative fluorescence spectra 
of tryptophan (6x10-7 M) in pH 7.0 buffer and aqueous 6 M NaCl solution.  The quenching of 
fluorescence due to chloride ions is negligible compared to that of 1-methylimidazole.  This 
demonstrates that complete loss of fluorescence from cellulase in mim Cl is due to the 
imidazolium cation rather than to the chloride anion.  For purposes of comparison, pure mim 
Cl is 9 M in chloride ion. 
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The activity of the enzyme was monitored at 65oC in pH 4.8 buffer and in all the eight 

ionic liquids using cellulose azure as the substrate.  The absorbance of the solubilized dye 

increased with time in pH 4.8 buffer, mim Cl, and HEMA (Figure VI.4); but the initial rate of 

hydrolysis was much faster in buffer.  After one hour, the absorbance due to the liberated dye 

became constant, whereas it increased monotonically for the two ionic liquids, mim Cl and 

HEMA.  The plateau observed in the absorbance curve for the buffer is not due to the 

exhaustion of the substrate in the reaction medium, since visibly detectable amounts of 

unreacted solid cellulose azure remained in the reaction vessel in all of the activity 

experiments.  Because cellulase in buffer denatures, its activity ceases; and no further 

hydrolysis occurred.  On the other hand cellulase remains active and stable in mim Cl and 

HEMA, and hydrolysis can continue.  Cellulase did not show any activity in the other ionic 

liquids.   

Rogers and coworkers 36 have argued that bmim Cl deactivates the enzyme within an 

hour due to the presence high concentration of chloride ions and interpret the quenching of 

trytophan fluorescence in that ionic liquid as a signature of denaturation.  We found that the 

tryptophan fluorescence is completely quenched in mim Cl, which is consistent with the 

reports of Rogers and coworkers for bmim Cl; but the hydrolysis of cellulose continued even 

1 hour after the addition of cellulase in mim Cl.  Negligible hydrolysis of cellulose was 

observed in the absence of enzyme in mim Cl, contrary to the observation of Vanoye and 

coworkers, who reported that, owing to its inherent acidity, mim Cl can act both as a catalyst 

and solvent in the dehydration of fructose. 46  The difference between our work and that of 

Vanoye and coworkers merits comment.  The latter reports on the dehydration of simple 

sugar molecules, such as fructose and sucrose, to yield 5-hydroxymethylfurfural (HMF) 
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using the ionic liquid 1-methylimidazolium chloride (mim Cl), in which the latter acts both 

as a catalyst and solvent.  Dehydration of sugars is reported to be catalyzed by acids. 6  

Owing to the inherent Brønsted acidity of mim Cl, the dehydration process is facilitated as 

shown in their work.   Our experiments, on the other hand, deal with a much more 

complicated polymer, cellulose, as opposed to monomeric sugar units such as glucose, 

fructose, etc.  Cellulose (Figure VI.1a), as noted earlier, is a polydispersed linear 

homopolymer of β-(1�4)–glycosidic linked D-anhydroglucopyranose units, with intra- and 

inter chain hydrogen bonds.  Hydrolysis of cellulosic polymer is much more complicated 

than dehydration of single sugar unit. This is most likely the reason for mim Cl being unable 

to cause substantial hydrolysis of cellulose (Figure VI.4b). 

Furthermore, we monitored the fluorescence intensity of tryptophan in buffer as a 

function of Cl- and did not observe any quenching even at 1M NaCl.  At 6M NaCl (the 

highest concentration obtainable in water at room temperature), only slight quenching was 

observed (Figure VI.5).  On the other hand, efficient quenching was found on the addition of 

the cationic moiety of the ionic liquid, 1-methylimidazole (Figure VI.5).  A Stern–Volmer  

quenching plot was biphasic, with Ksv = 3.8 M
-1 up to 0.4 M and with Ksv = 89 M

-1 from 0.4 

to 1 M, which is consistent with the trends reported by Engelborghs and coworkers.47,48 The 

efficiency of quenching increases in the presence of positively charged imidazolium cation, 

due to electron transfer from tryptophan to the imidazolium ring.  Thus the quenching of 

fluorescence from cellulase is not due to chloride ions, but to the imidazolium moiety. 

Enzymatic Stability:  Calorimetry and Temperature Studies 

In order to characterize the behavior and stability of cellulase in the ionic liquids, 

temperature induced unfolding of the enzymes was studied using optical absorbance and 
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differential scanning calorimetry measurements.   The stability of cellulase in buffer, mim Cl 

and HEMA was monitored by recording the absorbance of tryptophan at 280 nm as a 

function of temperature (Figure VI.6).  Conformational changes have been associated with 

large absorbance changes as a function of temperature.49  The buffer solution containing the 

enzyme turned turbid at 50oC, thus absorbance was recorded until 45oC.  In both the ionic 

liquids, however, no turbidity was observed.  A jump in absorbance was found at 

temperatures greater than 100oC in HEMA, which probably is an indication of a 

conformational change in the cellulase; whereas in mim Cl, a monotonic increase of 

absorbance was observed with temperature.  Reversibility of the unfolding of cellulase in the 

ionic liquid was observed by slow cooling, which led to a drop in the absorbance to the initial 

value in HEMA which was not observed in mim Cl or in buffer.  The precipitated enzyme in 

buffer did not dissolve on cooling.  Thus the cellulase is probably more stable and gains 

higher heat resistance in the HEMA than in buffer.  

Heat flow curves from differential scanning calorimetry (DSC) measurements in 

Figure VI.7 show thermal unfolding of cellulase in pH 4.8 citrate buffer, mim Cl, and 

HEMA.  The minima in the heat flow curves correspond to T1/2, the “transition temperature” 

where 50% of the enzyme is unfolded.  The transition peaks are very broad because of the 

presence of multiple enzyme components from T. reesei.  Baker et al. 45 reported DSC 

studies of four major enzyme components produced T. reesei, which are the two 

endoglucanases, EG I and EG II, and the two cellobiohydrolases, CBH I and CBH II.  CBH I, 

CBH II and EG I have nearly identical transition temperatures at ~ 64oC, whereas the EG II 

shows a transition temperature at ~ 75oC in pH 4.8 acetate buffer.  Our results showed a 

broad transition peak ranging from 60–75oC in pH 4.8 citrate buffer, which is in good 
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agreement with those reported by Baker et al.  On the other hand, the transition temperature 

of cellulase in HEMA shifted to ~ 115–125oC, which suggests that the ionic liquid is 

increasing its thermal stability.   Fused transition peaks were also observed in ionic liquids as 

in buffer.    An additional small transition peak was observed at ~ 70oC, which is probably 

due to early denaturation of a particular component of T. reesei.  In mim Cl, cellulase showed 

multiple transition peaks (75 and 94oC), which are also higher than those observed in pure 

buffer solution.  

 

 

 

 

 

 

 

 

 

 

 

Figure VI.6.  Temperature dependence of absorbance of trytophan in cellulase in buffer, 
mim Cl, and HEMA.  The cellulase precipitates at 50oC in buffer, indicating denaturation of 
the enzyme and limiting the temperature range for the experiment to 45oC.  The transition 
from the native to the unfolded state was observed at ~ 110oC and is associated with a sudden 
increase in the absorbance of the enzyme in HEMA. No such denaturation profile was 
observed in mim Cl.  
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Figure VI.7. DSC heat-flow profiles of cellulase in pH 4.8 citrate buffer (black), mim Cl 
(red), and in HEMA (blue).  Broad transition peaks were obtained due to the presence of 
multiple cellulase components from T. reesei fungus. The transition temperature (T1/2) in 
buffer at ~ 60–75oC, and in ionic liquids at 74–85oC for mim Cl and 115–125oC for HEMA, 
shows that the ionic liquid imparts higher heat resistance to cellulase enzymes, indicating 
greater thermal stability.  
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Reversibility of the unfolding process was checked by gradual cooling of the 

denatured enzyme from temperatures greater than the T1/2.  Cellulase unfolding was 

irreversible in buffer and accompanied by precipitation of the enzyme.  In HEMA, 

reversibility was observed until 120oC.  The unfolding process was completely irreversible in 

mim Cl.  These observations are consistent with our absorbance studies (Figure VI.6), 

confirming that cellulase is more stable and can withstand higher temperatures in the ionic 

liquids. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.8.  Time dependent study of steady state fluorescence intensity of cellulase in 
HEMA in a microwave oven at 65oC.  The samples were excited at 284 nm.  The significant 
quenching and red shift (shown in inset) in the emission suggest that the enzyme is denatured 
by strong internal heating from the microwave irradiation.  Experiments with cellulase in 
buffer were not performed, since the enzyme denatures and precipitates at ~50oC.  
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 Since microwave irradiation has been reported to assist dissolution of cellulose in 

ionic liquids,9 cellulase activity in HEMA was also studied using microwave heating at 65oC, 

but no liberation of the dye was observed even after 2 hours.  The fluorescence intensity of 

cellulase was monitored with time during microwave heating as shown in Figure VI.8 and 

was quenched drastically with time, accompanied by a red shift of the peak maxima.  This is 

most likely due to internal heating by microwaves, producing a local temperature at the 

enzymes greater than 100oC, resulting in denaturation.   

 Enzymatic activity is strongly dependent upon the ionic liquid in which it is 

dissolved.  There have been reports that suggest that ionic liquids can deactivate enzymes.  

Bmim nitrate, bmim lactate and emim ethylsulfate deactivate enzyme Candida antarctica 

lipase B. 34  Denaturation is likely due to the interaction of different charged groups in the 

enzyme with the cations and anions in the ionic liquid. 50  Herrmann and coworkers51 have 

reported denaturation of Ribonuclease A in different imidazolium based ionic liquids with 

different anionic combinations and have argued that the stability of the enzyme in ionic 

liquids is governed by Hofmeister effects.  Anions in ionic liquids have been reported to have 

a more dominant effect than cations for the stability of enzymes. 52  Those with lower 

hydrogen bond basicity and nucleophilicity are effective for the stability of the enzymes.  

Baker et al. 53 studied the protein monellin in bmpyro NTf2 using steady-state fluorescence 

and have reported higher thermodynamic stability (Tm~105
oC) compared to buffer (~40oC), 

which is consistent with our observation with cellulase in HEMA.  They have suggested that 

the ionic liquid might significantly alter the hydration level and compactness of the protein 

structure.  Strikingly, we have found that cellulase was unstable and inactive in bmpyro 

NTf2, in which a dramatic quenching of tryptophan fluorescence was observed.   
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TABLE VI.1.Viscosity of Various Solvents  

Solvent Temp. (
o
C)  η (cP) 

a 

20 1.0 

50 0.55 

 

H2O 
55 

65 0.43 

30 11000 bmim Cl 56   

70 330 

20 9.8 ± 0.2 

30 6.8 ± 0.1 

50 4.2 ± 0.1 

65 3.0 ± 0.1 

mim Cl 

85 2.2 ± 0.1 

20 1460 ± 30 

30 640 ± 8 

50 230 ± 5 

65 110 ± 2 

 

 

HEMA 

85 50 ± 1 

a Viscosity in centipoise for various solvents, including the ionic liquids:  1-butyl-3-
methylimidazolium chloride (bmim Cl); 1-methylimidazolium chloride (mim Cl); and tris-(2-
hydroxyethyl)-methylammonium methylsulfate (HEMA). 
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Viscosity plays an important role.  As we have seen above, although cellulase is 

extremely stable and heat resistant in HEMA, its activity is still lower than in buffer.  We 

suggest that this is because of the high viscosity of the ionic liquid (Table VI.I).  Although 

cellulase has been reported to be inactive in chloride containing ionic liquids such as bmim 

Cl, 36, our studies in mim Cl reveal  appreciable activity, which might also be due to its low 

viscosity relative to other imidazolium ionic liquids with longer alkyl chains, such as bmim 

Cl.  A large viscosity obviously reduces the rate of diffusion, resulting in a lower observed 

activity of the enzyme.  A similar observation by Lozano et al.54 reveals a reduction in the α-

chymotrypsin activity in highly viscous methyltrioctylammonium NTf2 (574 cP) compared to 

1-ethyl-3-methylimidazolium NTf2 (34 cP).  The viscosities of the six ionic liquids (given in 

Figure VI.4) in which cellulase did not show any significant activity are all higher than that 

of mim Cl , but lesser than HEMA.  From these data, we suggest that the rate of hydrolysis 

may depend on the viscosity of the ionic liquid, but it cannot be directly correlated with the 

activity of the enzyme.   

Conclusions 

 This work provides a detailed study of cellulase activity and stability in various ionic 

liquids.  Among the eight ionic liquids studied here, extensive experiments have been done 

with mim Cl and HEMA.  The former was chosen to compare with the results obtained with 

bmim Cl reported by Rogers and coworkers. 36  Although cellulase did not fluoresce in mim 

Cl (consistent with its reported behavior in bmim Cl 36), it was active in mim Cl, and its 

activity was higher than that in bmim Cl.  The quenching of trytophyl fluorescence in these 

ionic liquids is due to the high concentration of imidazolium cations and does not necessarily 

indicate deactivation of the enzyme, as we have observed in case of mim Cl.   The lower 
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viscosity of mim Cl increases enzymatic activity with respect to bmim Cl.  Our studies show 

that in HEMA the enzyme is stable and thermally resistant even at temperatures close to 

100oC; whereas in pH 4.8 buffer, it denatures at ~50oC.  Activity assays and DSC studies 

prove to be powerful and reliable methods to determine the activity and stability of enzymes 

in different media.  Slight differences in the transition temperatures reported are due to the 

different techniques used to determine its stability. Although microwave heating can dissolve 

large quantities of cellulose, the enzyme is denatured under these conditions.   

 In conclusion, of the eight solvents investigated, HEMA is in many ways the most 

promising.  It is a novel, green medium for performing cellulose hydrolysis reactions to 

convert biomass into biofuels.  Because of the thermal stability it imparts to enzymes, its 

ability to solubilize biomass, and the fact that it does not quench tryptophyl fluorescence 

(thus permitting monitoring of the enzymes by fluorescence spectroscopy), HEMA provides 

an ideal starting point for the design of ionic liquids, not only for the hydrolysis of biomass, 

but for use with a wide spectrum of enzymatic reactions.  It is also important to investigate 

the behavior of the individual cellulase components of T. reesei, such as the endoglucanases, 

cellobiohydrolases, etc. in different ionic liquids.  This is part of our ongoing studies.  
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CHAPTER VII. ENHANCED STABILITY AND ACTIVITY OF Aspergillus niger 

CELLULASE IN THE IONIC LIQUID 

TRIS-(2-HYDROXYETHYL)-METHYLAMMONIUM METHYLSULFATE (HEMA) 

 

 

 

Sayantan Bose1 and Jacob W. Petrich1,* 

 

Abstract 

We discuss the hydrolysis of cellulose using a pure cellulase: endo-1,4-β-D-glucanase 

(EG) from the fungus, Aspergillus niger, in buffer, the pure ionic liquid, tris-(2-

hydroxyethyl)-methylammonium methylsulfate (HEMA), and various mixtures of the two at 

different temperatures.  A. niger is an important commercial source of inexpensive cellulase 

(EG) in the food, textile, and pharmaceutical industries.  We have performed steady–state 

fluorescence and absorbance studies to monitor the stability and activity of EG using 

cellulose azure as the substrate.  We found that EG attains its highest activity at 45˚C in 

buffer and denatures at ~55˚C.  On the other hand, in buffer there is almost no hydrolysis 

after two hours, whereas, the reaction progresses monotonically in the ionic liquid.  

Furthermore, HEMA imparts substantial stability to the enzyme, permitting the activity to
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peak at 75˚C.  We discuss the role of temperature on the rate of catalysis and on solution 

viscosity.    

Introduction 

Limited reserves of fossil fuels and global climate change have directed increasing 

attention to the use of renewable biomaterials for energy production.  Ethanol produced by 

the fermentation of glucose is a promising fuel derived from biomass.1  Its production, 

however, from edible agricultural feedstocks is problematic.2  Research has thus focused on 

its production from cellulose, which is an abundant polymeric raw biomaterial.  

Consequently, during the past two decades, considerable effort has been devoted to the 

hydrolysis of cellulose for its ultimate conversion it into fuel. 3-9   There are, however, 

limitations to this process that are imposed mainly because of the limited solubility of 

cellulose in water or other organic solvents.  Namely, cellulose is a polydispersed linear 

homopolymer consisting of regio- and enantioselective β-(1�4)–glycosidic linked D-

anhydroglucopyranose units 5, 10; and this highly symmetrical polymer is sparingly soluble in 

most solvents. 11  Thus the traditional dissolution processes are not only cumbersome and 

expensive, but they also require extreme conditions,10, 12-15  which in turn may cause serious 

environmental problems13, 15, 16 because the solvents they require, such as LiCl/N,N-

dimethylacetamide, N-methylmorpholine-N-oxide/water, DMSO/paraformaldehyde, etc., are 

not only volatile, toxic, and costly; but they also cannot be recovered and reused. 13, 14  

Owing to the high chemical and thermal stability, extremely low volatility,17 non-

inflammability, and high recoverability and reusability18, 19 of ionic liquids, they have been 

the focus of green and eco-friendly research over the past decade.  These novel compounds 

have great potential for replacing conventional, volatile, environmentally harmful organic 
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solvents used in many catalytic and organic reactions.  The physical and chemical properties 

of ionic liquids are highly tunable by making the appropriate modifications to their 

constituent cations and anions.  A variety of fundamental studies20-26 has been performed on 

them to obtain a better understanding of their characteristics.  Notably, ionic liquids have 

been reported to dissolve substantial amounts of cellulose.11, 13, 27-36  Rogers and coworkers13, 

30-32, 37, 38 have carried out comprehensive studies on cellulose dissolution and regeneration in 

ionic liquids.  They found that 1-butyl-3-methylimidazolium chloride (bmim Cl) was the 

most effective in dissolving cellulose; and they attributed this effect to strong hydrogen 

bonding interactions of the hydroxyl groups with the halide anions, 13, 30-32, 37 consistent with 

the report of Zhang et al. 14 for 1-allyl-3-methylimidazolium chloride (amim Cl).  Sheldon 

and coworkers have shown high solubility of di- and polysaccharides in ionic liquids 

containing dicyanamide anions. 28  More recently it has been found that Bombyx mori silk, 

fibroin, 27 and hard and soft woods 33 are readily solubilized in imidazolium based ionic 

liquids.   

 

 

 

 

 

 

Figure VII.1.  Structure of tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA). 
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Employing enzymes with ionic liquids for cellulose hydrolysis is another step in 

making the entire process green. 7, 39-46  Enzymes have been reported to exhibit increased 

stability in ionic liquids, as opposed to common organic solvents.43, 47  Furthermore, 

recycling and reusing enzymes in ionic liquids 45, 48-50 is an additional advantage enabling 

continuous processing.  The most thoroughly studied enzyme in ionic liquids is Candida 

antarctica lipase B (Cal B), used to catalyze transesterification reactions.43-45, 51  While the 

hydrophobic effect that increases protein stabilization is absent in organic ionic liquids, one 

advantage to biocatalysis in ILs as opposed to aqueous buffers is the longer activity of 

enzymes in ILs, which is thought to arise from the slow breaking and remaking of hydrogen 

bonds in the non-aqueous medium. 52  There are also some reports of enzyme activity in 

mixtures of water and ionic liquids.  An early study of alkaline phosphatase from E. coli in 

aqueous mixtures of ethylammonium nitrate (EAN) showed maximum activity at 10% EAN.  

Further addition of EAN reduced activity, and none was observed at 80% EAN. 53 

Chloroperoxidase (CPO) from Caldariomyces fumago was used to catalyze a sulfoxidation 

reaction in aqueous mixtures containing up to 70% of hydroxyethyltrimethylammonium 

(HOEtMe3N) citrate ionic liquid.  CPO also tolerated up to 70% of 1,3-dimethylimidazolium 

dimethylphosphate (mmim Me2PO4).  There was a significant dip in activity at 30% ionic 

liquid and a maximum at 50%.54  Kaftzik et al. have reported that while triethylammonium 

methylsulfate (Et3NH MeSO4) deactivated enzymes, such as formate dehydrogenase 

(CbFDH) from Candida boidinii and the β-galactosidase from Bacillus circulans, a similar 

ionic liquid, triethylmethylammnoium methylsulfate (Et3MeN MeSO4), was tolerated by 

CbFDH with 55% residual activity in 50% aqueous medium.55  Recent reports by Sapra and 

coworkers showed higher tolerance of purified endoglucanase from a hyperthermophilic 
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bacterium, Thermatoga maritima, and a hyperthermophilic archaeon, Pyrococcus horikoshii, 

towards the ionic liquid, 1-ethyl-3-methylimidazolium acetate (emim OAc), compared to that 

of the industrial benchmark, Trichoderma viride cellulase, in the same ionic liquid. 56   

 In our recent work,46 we have shown that a commercial preparation (GC 220) 

consisting of a mixture of endoglucanases and cellobiohydrolases from Tricoderma reesei 

gained significantly enhanced stability in two ionic liquids:  1-methylimidazolium chloride 

(mim Cl) and tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA).  While 

hydrolysis at 65˚C was initially much faster in buffer than in these two liquids, it reached a 

plateau after two hours.  On the other hand, the hydrolysis progressed monotonically in the 

two ionic liquids.  This difference in the rate of hydrolysis was largely attributed to two 

factors:  first, the viscosity of the ionic liquids is greater than that of the buffer; and second, 

the enzymes are irreversibly denatured at 50˚C in buffer, while they are stable to 

temperatures greater than 100˚C in HEMA.  This work motivated us to initiate a study of a 

pure cellulase component in HEMA and to explore its activity for the saccharification of 

cellulose.   

 Here, we describe new studies made with a pure cellulase: endo-1,4-β-D-glucanase 

(EG) from the fungus, Aspergillus niger, in buffer, in neat HEMA, and in various mixtures at 

different temperatures.  A. niger is an important commercial source of inexpensive cellulase57 

(EG) in the food, textile, and pharmaceutical industries. 58  Several properties of EG from A. 

niger have already been well characterized, such as substrate specificity and optimum 

temperature and pH for its activity.59-62  We have performed steady–state fluorescence and 

absorbance studies to monitor the stability and activity of EG using cellulose azure as the 

substrate.  We found that EG attains its highest activity at 45˚C in buffer and denatures at 



www.manaraa.com

210 

 

~55˚C.  On the other hand, HEMA imparts substantial stability, permitting the activity to 

peak at 75˚C.  Finally, we studied the activity of EG in aqueous mixtures of the ionic liquid 

as a function of temperature and viscosity.   

Experimental  

Materials and Methods. A pure cellulase component, endo-1,4-β-D-glucanase (EG) (EC 

3.2.1.4), from the fungus, Aspergillus niger, was purchased from Megazyme, Ireland, was 

reported to show a single band on SDS PAGE, and was used without further purification.  

The enzyme was equilibrated in pH 4.8 citrate buffer prior to any experiments.  Cellulose 

azure from Sigma Aldrich, which although may not be used for quantitative purposes but is 

appropriate for comparative activity studies,74 was washed multiple times with deionized 

water to eliminate any unbound dye particles from the surface of cellulose, and was dried 

before using.  (It is made from purified cotton linters and then covalently tagged with 

remazol brilliant violet dye.)  Upon hydrolysis of cellulose, the dye is solubilized and its 

absorbance reports on the activity of the enzyme.  The room temperature ionic liquid used in 

this study is tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA, Figure VII.1) 

obtained from Sigma Aldrich.  HEMA was not dried before using, since aqueous enzyme 

solution was introduced before performing experiments.  Coumarin 153 (C153) (Exciton 

Inc., Dayton, OH) was used as received.  Acetonitrile (HPLC grade), methanol (HPLC 

grade), and acetone were purchased from Aldrich and were used as received.  Viscosity 

measurements were made with a ViscoLab 4000 piston style viscometer from Cambridge 

Applied system at desired temperatures.   

Steady-State Measurements.  Steady-state fluorescence spectra were obtained on a Spex 

Fluoromax-4 with a 3-nm bandpass and corrected for lamp spectral intensity and detector 



www.manaraa.com

211 

 

response.  A temperature dependent study of fluorescence from cellulase in pH 4.8 buffer and 

HEMA was performed from 20°C to 105°C, with spectra obtained at 5° intervals. The 

cellulase concentration was maintained at 5x10-7 M.  All cellulase samples were excited 

either at 284 or 295 nm and identical spectra were obtained at both wavelengths.  Coumarin 

153 samples were excited at 407 nm and the emission was collected in range of 430–800 nm 

with a 2-nm bandpass.  Steady-state absorption spectra for the cellulase activity experiments 

were obtained on a Varian Cary 100 Bio UV-visible spectrophotometer with 1-nm resolution 

equipped with a Peltier temperature controller.  EG activity was monitored in binary mixtures 

of buffer and HEMA (0%, 10%, 50%, and 100%).  All the activity measurements were done 

in a double-beam spectrometer, where both sample and reference cells were maintained at 

identical conditions.  The latter contained substrate without enzyme for automatic subtraction 

of the absorbance of the liberated dye (if any) in the absence of enzyme.  Temperature 

dependent studies at 45, 55, 65 and 75°C were performed in all the solvent systems.  The 

concentration of cellulose azure was maintained at 1.5 mg/mL, and the enzyme concentration 

was 4.8x10-6 M for all the activity measurements.  For both fluorescence and absorption 

measurements, a 1-cm path-length quartz cuvette was used.   

Results and Discussions 

Steady-state fluorescence from endo-1,4-β-D-glucanase (EG) obtained from A. niger 

was monitored in pH 4.8 citrate buffer and HEMA as a function of temperature from 20°C to 

105°C.  EG in HEMA had a higher fluorescence quantum yield at all temperatures compared 

to that in buffer.  Quenching of fluorescence from tryptophan residues in EG was observed in 

both solvents.  Significant fluorescence quenching at 50°C, accompanied by precipitation of  
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Figure VII.2.  (a) Shift in the maximum of tryptophan fluorescence from A. niger 
endoglucanase (EG) with temperature in pure pH 4.8 citrate buffer and HEMA.  The red shift 
is associated with the unfolding of the enzyme.  The transition temperature of EG in HEMA 
is higher than that in buffer, indicating greater thermal stability of the enzyme in the ionic 
liquid.  (b) Cooling of the enzyme in HEMA, starting from temperatures 105, 95, 85, 75 and 
65˚C (indicated by arrows), produces different blue shifts.  The unfolding of EG was 
completely reversible up to 65˚C, whereas partial reversibility was observed at temperatures 
greater than 75˚C.  
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the enzyme in buffer, indicated its denaturation.  Such quenching did not occur until 75°C in 

HEMA, indicating that the ionic liquid imparts a higher thermal stability to EG.  Precipitation 

of EG was not observed in HEMA, which speaks to the ability of the ionic liquid to 

solubilize the denatured protein.  (It is important to note, as we have discussed in detail, 46 

that in itself, fluorescence quenching is not necessarily a signature of denaturation.  It is 

possible that there are nonradiative processes between the aromatic amino acid residues of 

the enzyme and the solvent that quench the fluorescence without perturbing the protein’s 

structure of function.) 

 

 

 

 

 

 

 

 

Figure VII.3.   The variation of the relative percent activity of endoglucanase in pH 4.8 
citrate buffer (•) and HEMA (•) as a function of temperature (25 - 85oC) measured after 2 
hours using cellulose azure as the enzyme assay.  The activity of endoglucanase peaked 
(arbitrarily taken as 100% activity) at 45°C in buffer whereas in HEMA, the maximum 
activity was at 75°C. 
 

The fluorescence emission maximum of EG was monitored in buffer and HEMA 

(Figure VII.2a).  At room temperature, it is 326 nm in buffer and 324 nm in HEMA.  In 

buffer the emission maximum undergoes a large red-shift (326 to 339 nm) at ~ 55°C; 
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Figure VII.4.  Endoglucanase activity at 45, 55, and 65˚C as monitored via the absorbance 
of cellulose azure (1.5 mg/mL) at 572 nm for 2 hours in pure (•-black) and mixtures of 
HEMA (10% •-red, 50% •-green, 100% •-blue) and buffer.  In buffer, cellulase showed 
maximum activity at 45˚C, which is represented by higher absorbance of the liberated dye, 
which decreased with increasing percentages of HEMA.  We attribute this to the relative 
viscosities of the solvents.  On the other hand, in buffer there is almost no hydrolysis after 
two hours (i.e., the absorbance reaches a plateau) at 65˚C, whereas, the reaction progresses 
monotonically in pure HEMA and mixtures at all temperatures.  Error bars are determined 
from triplicate measurements.   
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whereas a corresponding large red shift (324 to 336 nm) is not observed until ~75°C in 

HEMA.  This again indicates the higher thermal stability of EG in HEMA.   

Reversibility of the unfolding process of the enzyme was studied in HEMA by 

gradual cooling, starting from different elevated temperatures as indicated by the arrows in 

Figure VII.2b.  On cooling, a gradual blue-shift of the emission maxima was observed.  The 

extent of the blue shift (i.e., the extent of the return to native conditions) depended on the 

starting temperature.  Cooling from 95 and 105°C resulted in blue shifts from 336 to 333 nm.  

The native conformation of the enzyme corresponds to λmax = 324 nm in HEMA.  Partially 

folded structures of the enzyme, with λmax ~326 nm, were attained when cooled from 75 – 85 

°C.  The enzyme completely folded back to its native conformation when cooled down from 

65°C.  This leads us to conclude that enzyme unfolding is completely reversible until 65°C, 

whereas partial reversibility was obtained up to temperatures as high as 75 – 85°C.

Irreversible denaturation occurred beyond 85°C.  On the contrary complete recovery of 

fluorescence intensity was observed on cooling the enzyme in HEMA irrespective of the 

starting temperature.  This suggests that fluorescence intensity quenching cannot be reliably 

considered as a signature of protein denatuation, which is consistent with our previous 

studies. 46   

 Endoglucanase activity was studied at four different temperatures (45, 55, 65, and 

75°C) using cellulose azure as a substrate in different mixtures of HEMA and pH 4.8 citrate 

buffer, namely, 0, 10, 50, and 100% HEMA.  The progress of EG-catalyzed hydrolysis of 

cellulose was monitored as a function of the absorbance of the liberated dye with time.  The 

liberated dye showed three different peaks at 250, 323 and 572 nm.  For all the activity 
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measurements, the absorbance at 572 nm was monitored, although there was a slight shift in 

optical absorbance spectra in increasing proportions of the ionic liquid in buffer.  The percent 

of maximum activity of EG in pure pH 4.8 buffer and in HEMA after 2 hours is shown in 

Figure VII.3.   In buffer, the activity peaked at 45°C, drastically dropped to 10% at 75°C, and 

finally decayed to zero at 85°C.  Even though the enzyme is in its native state in buffer at 

25°C and 35°C, the lower activity indicates that the optimum temperature for the enzyme 

provides a balance between the catalytic rate and the rate of enzyme denaturation.  Earlier 

reports by Hurst et al. showed that a cellulolytic enzyme from A. niger had a maximum 

activity at 45°C at pH 4.0, which diminished to almost zero beyond 65°C. 62  Okada reported 

the optimum pH and temperature to be 4.0  and 45~50°C for a pure cellulase from A. niger.  

The enzyme was completely stable over the range of pH 5.0~8.0 at 4°C for 24 hours, and 

retained about 50% of its original activity after heating at 70°C for 10min. 63  On the other 

hand in HEMA, the activity was maximal at 75°C, and then dropped to 75% of this value at 

85°C.  The initial lower activity at low temperatures in HEMA may be due to its high 

viscosity of 1460 cP at 20oC (see below).   

Figure VII.4 presents a plot of the absorbance (at 572 nm) of the liberated dye for up 

to 2 hours in different mixtures of buffer and HEMA at different temperatures.  In pure 

buffer, EG activity peaked at 45°C, and drastically dropped at temperatures greater than 

65°C.  In pure HEMA, its activity peaked at 75°C and decreased at higher temperatures.  At 

45°C, EG activity decreased with increasing concentration of HEMA.  However, at 65 and 

75°C the EG activity curve increased monotonically in aqueous HEMA mixtures, whereas in 

pure buffer it levels off after 1.5 hours.  Comparing relative activities of the enzyme for 
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various HEMA/buffer mixtures, the highest activity was at 65°C for 10% and 50% HEMA.  

EG activity after 2 hours decreased in the order 65 > 55 > 45 > 75°C for 10% HEMA and 65 

> 55 ≅ 75 > 45°C for 50% HEMA.   

 

 

 

 

 

 

 

 

 

 

 

Figure VII.5.  Endoglucanase activity at 75˚C as monitored via the absorbance of cellulose 
azure (1.5 mg/mL) at 572 nm in pure (•-black) and mixtures of HEMA (10% •-red, 50% •-
green, 100% •-blue) and buffer for 3 hours.  Activity in both 10% and 50% HEMA exceeds 
that in pure buffer after 3 hours, whereas the hydrolysis ceases in the latter after 1.5 hours.  
Error bars are determined from triplicate measurements.   
 

 Studies at 75°C (Figure VII.5) indicated the highest EG activity at 10% HEMA.  

While the activity plot flattens out after 1.5 hours in pure buffer, the hydrolysis continued 

even after 2 hours in the presence of HEMA.  After 2 hours, the activity in 50% HEMA 

equalized with that in pure buffer.  At longer times, hydrolysis continues in 50% HEMA but 

it plateaus (i.e., ceases) in the pure buffer.  These observations indicate that the ionic liquid 

imparts an additional stability to the enzyme at higher temperatures.  Our results are not 
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consistent with those obtained by Rogers and coworkers, who reported that the concentration 

of ionic liquid, 1-butyl-3-methylimidazolium chloride (bmim Cl), is inversely proportional to 

the activity of cellulase in aqueous bmim Cl mixtures.39  Apart from studies at 45oC, we 

observed equal or higher activity with addition of HEMA in water.  HEMA does not have a 

significant Brønsted acidity, unlike triethylammonium methylsulfate,55 and thus helps to keep 

the enzyme active without altering the acidity of the medium.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.6.  Normalized steady-state emission spectra of C153 in different solvents. The 
fluorescence spectra were obtained by exciting the sample at 407 nm with a 2-nm bandpass. 
From the peak maxima, the order of polarity of the solvents is:  acetone < acetonitrile < 
methanol < HEMA.  
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Figure VII.7.  Plot of viscosity as a function of temperature for buffer, HEMA, and 
buffer/HEMA mixtures.  Pure HEMA is extremely viscous (~ 330 cP) compared to buffer (~ 
0.6 cP) at 45˚C.  The viscosity activation energies of the different solvent systems determined 
from the slope of the plot of ln(1/η) versus 1/T are 10.3, 4.0, 3.1 and 3.0 kcal/mol for 100%, 
50%, 10% and 0% HEMA in buffer, respectively.  
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Unlike organic solvents, ions constituting the ionic liquids have strong interactions 

with water molecules.  Depending on their size and charge density, they stabilize or 

destabilize the water structure around the enzyme,64, 65  which in turn influences the stability 

and activity of the enzymes.66   But these effects vary from one enzyme to other.  For 

example whereas methylsulfate (MeSO4
–) anion in HEMA imparted extreme stability to 

cellulase, 46 it proved to be detrimental for other enzymes such as penicillin G amidase, 65 Cal 

B, 51 and β-galactosidase. 55    

Polarity of the medium in which the enzyme is studied is also crucial for its stability 

and activity. 52, 65  In order to determine the relative polarity of the ionic liquids studied here, 

steady-state emission spectra of coumarin 153 (C153) have been obtained in a series of 

organic solvents and ionic liquid, as shown in Figure VII.6.  C153 is an extremely well 

studied solvatochromic probe, whose emission is highly sensitive to solvent polarity. Polarity 

was found to increase in the order of acetone < acetonitrile < methanol < HEMA.    

 The rate of hydrolysis of cellulose is also dependent on the viscosity of the medium. 

46, 67-69  A higher viscosity obviously reduces the rate of diffusion of the enzyme to the 

substrate, resulting in a lower observed activity.  Figure VII.7 compares the viscosities of the 

solvent systems studied at different temperatures.  That of pure HEMA is much higher than 

those of pure buffer and of the binary mixtures at all temperatures.  In general, ionic liquids 

have higher viscosities than most commonly used organic solvents.70  In addition to hydrogen 

bonding interactions, strong intermolecular forces between charged ions are responsible for 

their high viscosity.17, 25, 70-72 

At 45°C, where EG showed its highest activity in pure buffer with decreasing activity 

upon addition of HEMA, this can be attributed to increasing viscosity (Figures VII.4 and 
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VII.7).  A similar observation by Lozano et al.73 reveals a reduction in the α-chymotrypsin 

activity in highly viscous methyltrioctylammonium NTf2 (574 cP) compared to that in 1-

ethyl-3-methylimidazolium NTf2 (34 cP).  It is significant that we did not observe this trend 

at the higher temperatures of 55, 65 and 75°C.  For 10% HEMA the activity was greater than 

that in pure buffer at 55 and 65°C.  This is because the viscosities of pure buffer and 10% 

HEMA solution are nearly equal at these temperatures (Figure VII.7), and thus the increase 

in EG activity is solely due to the enhanced stabilization provided by HEMA.  The viscosity 

activation energy of pure HEMA and pure buffer were determined to be 10.3 and 3.0 

kcal/mol respectively.  Owing to the higher activation energy in HEMA, EG activity is 

obviously lower than that in buffer at 45°C.   

The situation is different at 75°C, where not only in 10% but also in 50% HEMA 

solution, cellulase showed enhanced activity compared to that in pure buffer after 3 hour 

period.  Even though the viscosity of 50% HEMA is ~ 4 times higher that of pure buffer, the 

stability that HEMA imparts to EG results in its higher activity, overcoming the barrier of 

activation due to viscosity.  Thus the resultant activity of cellulase and the rate of hydrolysis 

of cellulosic polymers is governed by both factors:  the stability of the enzyme in the solvent 

and the inherent viscosity of the solvent.   

Conclusion  

 This work provides a detailed study of EG stability and activity in buffer, HEMA, and 

their binary mixtures at different temperatures.  Motivated by our recent work, in which we 

have established that HEMA imparts considerable thermal stability to cellulases from T. 

reesei, we have focused on studying the behavior of a pure cellulose, EG from A. niger, 

rather than a mixture, as we did in our previous work.46  From fluorescence studies, we 
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conclude that the enzyme denatures and precipitates at ~55°C in buffer, whereas the 

transition temperature shifts to ~75°C in HEMA, which show that the enzyme gains higher 

heat tolerance in the ionic liquid.  We found that the activity of the enzyme was highest at 

45°C in pH 4.8 buffer and then drastically decreased at temperatures greater than 65°C and 

that the temperature optimum for the enzyme is a balance between the effect of temperature 

on catalytic rate and on the rate of enzyme denaturation.  Studies in aqueous HEMA mixtures 

showed enhanced activity of the EG in the presence of HEMA, which varied with 

temperature.   While identical EG activity was observed at 55°C in buffer and 10% HEMA, 

at 65 and 75°C, the activity in 10% HEMA exceeded that in pure buffer.  The viscosity of the 

solvent is a crucial factor determining the rate of hydrolysis, and we have shown that 

increasing the viscosity reduces the rate of the hydrolysis reaction and thus decreases the 

activity, which is borne out from the lower activity in HEMA in spite of the latter imparting 

higher stability to the enzyme.  On the contrary, even though 50% HEMA solution is more 

viscous than pure buffer, the enzyme showed higher activity in the former, which we have 

attributed to the higher thermal stability that HEMA imparts to the enzyme.  This thus 

reaffirms our hypothesis that the enzymatic activity is a compromise between both enzyme 

stability in a particular solvent and temperature and the viscosity of the medium, since a 

direct correlation between activity and solvent viscosity could not be established.   

 To our knowledge this is the first study dealing with a pure endoglucanase from 

commercial A. niger, which not only shows higher tolerance to ionic liquids such as HEMA 

but also whose thermostability is markedly enhanced in the presence of the ionic liquid.  As a 

result HEMA proves to be a novel, green medium for performing cellulose hydrolysis 

reactions to convert biomass into biofuels.  Because of the thermal stability it imparts to 
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enzymes, it provides an ideal starting point for the design of ionic liquids, not only for the 

hydrolysis of biomass, but for use with a wide spectrum of enzymatic reactions.  
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CHAPTER VIII.  INFLUENCE OF CHIRAL IONIC LIQUIDS ON 

STEREOSELECTIVE FLUORESCENCE QUENCHING BY PHOTOINDUCED 

ELECTRON TRANSFER IN A NAPROXEN DYAD 

 

A paper published in the Journal of Physical Chemistry B 
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Abstract 

In a previous study of a naproxen dyad in a pair of N-methylimidazoliummethyl 

menthylether-NTf2 chiral ionic liquids (J. Phys. Chem. B 2008, 112, 7555), we observed that 

though intramolecular electron transfer was impeded, a consistent small stereodifferentiation 

in the fluorescence lifetime of the dyad was obtained.  We proposed that this discrimination 

was purely electronic in nature and did not arise from geometrical effects, which can 

influence nonradiative rate processes, such as intramolecular electron transfer.  In our present 

work, we have studied the interaction of the same chiral naproxen dyad molecule in both the 

previously studied menthyl-based NTf2 ionic liquids and also in Bis(tertrabutylphosphonium) 

D-, L-tartrate ionic liquids.  Unlike in the menthyl-based IL pair, the amount of quenching is  
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different in the bis(TBP) tartrate enantiomeric liquids; and the tartrate enantiomers have a 

different temperature dependence on the nonradiative rate of the dyad.  This chiral 

discrimination most likely arises from the steric effects of the different conformations of the 

chiral molecules.  We have shown that viscosity and polarity of the solvents can influence the 

rate of electron transfer.  On the other hand, no such electron transfer quenching is observed 

in the menthyl-based NTf2 IL-solvents.  To our knowledge, this is the first example of chiral 

ionic liquids inducing a stereoselective fluorescence quenching by photoinduced, 

intramolecular electron transfer.  

Introduction 

Chiral recognition is a very important phenomenon in biochemical systems as well as 

in technological applications, enabling specific design of pharmaceuticals, chiral sensors and 

molecular devices.1 In asymmetric organic photochemistry, chiral recognition in the excited 

state is vital to achieve enantio-selectivity during photosensitization and quenching 

processes. As a result, investigation of stereoselective photochemical processes have become 

an attractive area in recent years,2,3 and chiral ionic liquids provide a fascinating medium to 

study stereoselective processes. Only a few examples of chiral ionic liquids have been 

reported so far.  Howarth and coworkers described the use of chiral imidazolium cation in 

Diels–Alder reactions.4  However, the syntheses of these systems required an expensive 

chiral alkylating agent and elaborate synthetic schemes.  The synthesis of ionic liquids 

employing chiral anions is can be more practical owing to the ready availability of many 

such anions as sodium salts.  For example, Seddon and coworkers investigated Diels–Alder 

reactions in lactate ionic liquids.5  More recently, Wasserscheid and coworkers synthesized 

three different groups of chiral ionic liquids.6  They observed a positive diasteriomeric 
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interaction between racemic substrates of sodium salt of chiral mosher’s acid and chiral ionic 

liquids by NMR spectroscopy.  Bao et al. reported the first synthesis of chiral imidazolium 

ionic liquids derived from natural amino acids.7  Very recently Warner and coworkers have 

synthesized amino acid based chiral ionic liquids via anion metathesis reaction between 

commercially available D- and L-alanine tert butyl ester chloride using a variety of 

counterions by employing lithium bis(trifluoromethanesulfonimide), silver nitrate, silver 

lactate, and silver tetrafluoroborate.  In addition to NMR, they have used steady-state 

fluorescence to evaluate chiral recognition and enantio-selectivity of the chiral ionic liquids 

on 2,2,2-trifluoroanthrylethanol, warfarin, and naproxen as chiral fluorophores.8  Yu et al. 

have used chiral borate anions and immidazolium cations to synthesize varieties of ionic 

liquids which consist of both chiral cations and chiral anions.9 

 Armstrong and co-workers have used a variety of methods to synthesize chiral ionic 

liquids either from chiral starting materials or using asymmetric synthesis.10  They have 

provided the first application of chiral ionic liquids as stationary phases in chromatography 

using chiral ionic liquids as stationary phases in gas chromatography.  Several compounds 

have been separated using these ionic-liquid-based chiral selectors.  A large number of 

compounds, including alcohols, amines, sulfoxides, and epoxides were injected into the 

chiral-ionic-liquid based columns.  These experiments demonstrate the first successful 

application of chiral ionic liquids as stationary phases in gas chromatography.11  Ding et al. 

have been the first to report the use of chiral ionic liquids inducing irreversible, unimolecular 

photoisomerization of dibenzobicyclo[2.2.2]octatrienes to chiral products.12   

Chiral discrimination in excited-state processes has been studied by several groups in 

the past few years.  The groups of Miranda13-24 and Tolbert25 have made considerable 
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advances in this domain.  In our recent work on N-methylimidazoliummethyl menthylether-

NTf2 chiral ionic liquids,
26 we observed a 10% stereodifferentiation in the fluorescence 

lifetimes of (S,S)-NPX-PYR dyad as well as in the parent compound, (S)-naproxen (S-NPX) 

(Figure VIII.1).  This differentiation was shown not to be due to any difference in physical 

properties of the ionic liquids (such as viscosity or polarity) or the presence of impurities.  

The choice of (S,S)-NPX-PYR as the chromophore was inspired by the work of Miranda and 

co-workers,24 who have shown that its diastereomers exhibit different behavior with regard to 

electron transfer or exciplex formation in polar solvents.  We proposed, consequently, that 

(S,S)-NPX-PYR would also provide a promising entrée into the study of chiral ionic liquids.  

But electron transfer, however, was frustrated in the N-methylimidazoliummethyl 

menthylether-NTf2 chiral ionic liquids (Figure VIII.1a), which we studied at room 

temperature.  In the present work, we perform similar studies in a different pair of optically 

pure, chiral, enantiomeric ionic liquids, bis(tetrabutylphosphonium) (TBP) D-, L-tartrates 

(Figure VIII.1b) to investigate further the effects of chiral ionic liquids on excited-state 

electron transfer.  In addition, the temperature dependence of the photophysics of the dyad in 

both the menthyl-based NTf2, and bis(TBP) tartrate solvents was investigated. Although 

photoinduced electron transfer has been studied in ionic liquids, to our knowledge, this 

would be the first example of chiral ionic liquids inducing a stereoselective fluorescence 

quenching by photoinduced intramolecular electron transfer.  

Experimental Section 

Materials.  Tetrabutylphosphonium (TBP) hydroxide (40 wt. % solution in water) and D-, L-

tartaric acid were purchased from Aldrich. All HPLC grade organic solvents were obtained 

from Fisher. For the decolorization of ionic liquids, decolorizing charcoal was purchased 
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from Acros Organics; silica gel for flash chromatography, from Fluorochem; and celite and 

alumina, from Aldrich. (S)- and (R)- (+)-6-methoxy-α-methyl-2-naphthaleneacetic acid 

(naproxen, NPX) were purchased from Sigma Aldrich and were used without any further 

purification.  Coumarin 153 (C153) (Exciton Inc., Dayton, OH) was used as received.  

Acetonitrile (HPLC grade), methanol, acetone and 99% (R)- and (S)-2-butanol were 

purchased from Aldrich and were used as received. 

 

Scheme 1 

 

 

 

 

 

Synthesis of Chiral Di-anionic Tartrate ILs with Tetrabutylphosphonium (TBP) Counter 

Cations.  Nonracemic, di-anionic, low-melting, colorless organic salts from L-tartaric acid, 

were prepared by reacting tetrabutylphosphonium hydroxide (2 eq.) with L-tartaric acid (1 

eq.) in cold methanol (Scheme 1).  L-tartaric acid (10.000 g, 6.67 x 10-2 mol) was dissolved 

in methanol (~ 150 ml) in a round-bottomed flask (500 ml) and kept in an ice water bath (~ 

20 mins) in order to lower the solution temperature to ~ 6-8 oC.  Pre-cooled (~5-7° C) 

tetrabutylphosphonium hydroxide (40 wt. % solution in water: 46.512 ml, 3.33 x 10-2 mol) 

was gradually added while stirring the cold methanolic tartaric acid solution.  Keeping the 

reaction mixture in an ice-water bath was necessary in order to obtain colorless low melting 

salts as final products.  Otherwise a pale-yellow color results.  Complete removal of the 

solvent was achieved by first evaporating it in a rotary-evaporator at room temperature to 

 

+

2 eq. 1 eq.

Methanol

~ 6-8oC

> 95%

+

2 eq. 1 eq.

Methanol

~ 6-8oC

> 95%



www.manaraa.com

234 

 

obtain a dense liquid and then keeping the resulting content in a vacuum oven (-30 in. Hg) at 

room temperature for three days.  All salts resulted in good yield (> 95%) as colorless 

liquids.  Characterizations of the salts are provided in the supporting information.  The other 

enantiomer was also synthesized and characterized using identical methods described above 

for L-tartrate salts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.1.  Structures of (a) the chiral N-methylimidazoliummethyl menthylether 
bis(trifluoromethylsulfonyl)imide ionic liquid, (b)  the L- di-anionic tartrate ionic liquids with 
TBP (tetrabutylphosphonium) counter cations, (c) (S)-(+)-6-methoxy-2-naphthylpropionic 
acid [S-naproxen, (S)-NPX], (d) (S)-N-methyl-2-pyrrolidinemethyl 2(S)-(6-methoxy-2-
naphthyl) propionate [(S,S)-NPX-PYR].  
 

The syntheses of (S,S)-NPX-PYR and the N-methylimidazoliummethyl 

menthylether-NTf2 ionic liquids are described in detail elsewhere.
26  For the methylmenthyl 

ether based ILs our previously published (vide infra) purification method was used.  For the 

(TBP)-titrate ILs, no decoration method was necessary as they were synthesized with no 
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color by a new procedure reported herein.  Viscosity measurements were made with 

ViscoLab 4000 piston style viscometer from Cambridge Applied system at temperatures 22, 

35, 45 and 55 oC. 

Steady-State Measurements.  Steady-state absorption spectra were obtained on a Hewlett-

Packard 8453 UV-visible spectrophotometer with 1-nm resolution.  The optical density was 

≤ 0.8 at 266 nm.  Steady-state fluorescence spectra were obtained on a Spex Fluoromax-2 

with a 2-nm bandpass and corrected for lamp spectral intensity and detector response.  For 

both fluorescence and absorption measurements, a 3-mm path-length quartz cuvette was 

used.  Naproxen and dyad samples were excited at 266 nm; and coumarin 153, at 420nm.  

Fluorescence Lifetime Measurements.  Lifetime measurements were acquired using the time-

correlated single-photon counting (TCSPC) apparatus described elsewhere.27,28 The data 

were acquired in 1024 channels.  Usually the time window was chosen to be ≥ 4 times that of 

the fluorescence lifetime measured.  The instrument response function had a full width at 

half-maximum (FWHM) of ~50 ps.  A 3-mm path length quartz cuvette was used for all the 

time-resolved measurements.  Fluorescence decays were collected at the magic angle 

(polarization of 54.7o) with respect to the vertical excitation light at 266 nm, with ~ 30,000 

counts in the peak channel.  

Results and Discussions 

Our chiral ionic liquids are transparent from 380 nm to 800 nm.  Contrary to the 

report by Samanta and co-workers,29 who proposed that ionic liquids can be intrinsically 

colored, we find that their preparation can produce small amounts of strongly absorbing and 

emitting species, which can present problems in performing and analyzing spectroscopic 

studies30 and that, in fact, these impurities can alter physical properties such as the viscosity.  
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We have used either the protocol cited above to purify these solvents or have taken 

precautions to make them in colorless form.  All the measurements were performed at low 

temperatures (< 70°).  To ensure that the ionic liquids did not deteriorate on heating, 

absorbance and fluorescence spectra at all temperatures were monitored and found to be 

unperturbed.  

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.2.  Normalized absorption (green) and emission spectra (red) of the (S,S)-NPX-
PYR dyad in the D- (��) and L-tartrate ionic liquid (�).  The fluorescence maximum of 
the dyad in both of the ILs is ~ 355 nm. The fluorescence spectra of the ILs (blue) are plotted 
on the same scale, but their intensity is negligible compared to that of the naproxen 
derivatives. The fluorescence spectra were obtained by exciting the sample at 266 nm with a 
2-nm bandpass.   
 

Representative steady-state absorption and emission spectra of the (S,S)-NPX-PYR 

dyad in the two enantiomeric bis(TBP) tartrate ionic liquids, along with the intrinsic 

fluorescence of the ionic liquids excited at 266 nm, are given in Figure VIII.2.  The 
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fluorescence intensity of the ionic liquids is negligible in comparison to that of the solute, 

verifying the solvents’ high level of purity.  The chiral dyad molecule showed identical 

emission spectrum in the bis(TBP)  D- and L- tartrate solvents, with peak maxima at 355 nm.  

In the menthyl-based NTf2 ionic liquids, the peak maxima are identical, but slightly blue 

shifted to 352 nm.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure VIII.3.  Plot of singlet quantum yields against temperature of the (S,S)-NPX-PYR 
dyad in D- (black dots) and L- (red dots) tartrate ionic liquids, obtained  from the steady-state 
emission spectra, taking tryptophan in buffer (pH 7.0) as the standard (Φtrp

 =0.18) 34-36.  The 
error bars are based on the average of three measurements.  The fluorescence quantum yields 
are almost same at 22oC, but they increasingly differ with temperature.  
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Steady-state spectra were also obtained as a function of temperature.  The 

fluorescence intensity decreased differently for the two tartrate liquids, without any shift in 

the peak maxima. Steady-state quenching was observed to be higher in the case of the D-

isomer.  The fluorescence quantum yield (Φ) was calculated using tryptophan in buffer (pH 

7.0) as a standard. A clear difference in the extent of quenching of the dyad was observed in 

the bis(TBP) D- and L- tartrate solvents (Figure VIII.3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.4.  Fluorescence decay traces ( λex = 266 nm, λem ≥ 300 nm ) of  (S,S)-NPX-
PYR in D- and L- tartrate ionic liquids at room temperature (black) and at 55oC (red)   Traces 
for all the temperatures are not shown for clarity of presentation.  There is an ~ 10% decrease 
in lifetime of (S,S)-NPX-PYR in D- compared to that of in L- at room temperature, whereas 
the difference of lifetime increased with temperature.  The lifetimes of (S,S)-NPX-PYR in 
the chiral ILs are given in Table VIII.I.  
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TABLE VIII.1. Fluorescence Lifetimes and Steady-State Quantum Yields of (S,S)-NPX-
PYR and (S)-NPX in Different Solvents 
 

 

Solute 

 

 

Solvent 
a
 

 

Temp. (
o
C) 

 

Lifetime 
b, c
 

(ns) 

 

Φ 
b
 

D- IL 8.1 ± 0.2 0.25 ± 0.01 
L- IL 

22 

8.9 ± 0.2 0.26 ± 0.01 
D- IL 6.1 ± 0.2 0.20 ± 0.01 
L- IL 

35 

7.1 ± 0.2 0.22 ± 0.01 
D- IL 4.3 ± 0.2 0.16 ± 0.01 
L- IL 

45 

6.1 ± 0.2 0.19 ± 0.01 
D- IL 3.3 ± 0.2 0.12 ± 0.01 
L- IL 

55 

5.3 ± 0.2 0.16 ± 0.01 
(R)-2-butanol 8.6 ± 0.3  
(S)-2-butanol 7.5 ± 0.3  

 
 
 
 
 

(S,S)-NPX-
PYR 

Acetonitrile 

 
22 

3.2 ± 0.3  
D- IL 5.0 ± 0.2  
L- IL 

22 

4.2 ± 0.2  
D- IL 2.0 ± 0.1  
L- IL 

55 

1.6 ± 0.1  

(S)-NPX 

Acetonitrile 7.2 ± 0.2  
D- IL 4.5 ± 0.2  (R)-NPX 
L- IL 

 
22 

3.6 ± 0.2  
 

a IL: Bis(tetrabutylphophonium) (TBP) tartrate ionic liquids. 
b Error bars are based on the average of three measurements. 
c All of the fluorescence lifetimes reported are single exponential, except for that of the D 
tartrate at 45 and 55oC, where they are fit to a sum of two exponentials and an average 
lifetime is reported.   

 

Time-resolved experiments were also performed on the (S,S)-NPX-PYR dyad in the 

D- and L- tartrate ionic liquids.  A 10% difference in lifetime (~8.9 and ~8.1 ns) is observed 

in the two chiral solvents at room temperature (Figure VIII.4), which is consistent with our 

previous results in the menthyl-based ionic liquids.26  As a control, similar experiments were 

also done with (S)-naproxen, which is the parent compound of the dyad, and the 

stereodifferentiation in the lifetimes, is also observed at room temperature (Figure VIII.5).  
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To ensure that this discrimination is not due to impurities in the ionic liquids, (S)- and (R)- 

naproxen were also studied in the same ionic liquids, and a ~ 10% difference in fluorescence 

lifetimes was observed for the two naproxen isomers (Table VIII.1).  As a further control, 

lifetimes of the dyad molecule were also determined in (R)- and (S)-2-butanol.  In all cases, 

the chiral differentiation of lifetimes is consistent (Table VIII.1).  This unambiguously 

indicates that the observed difference in lifetimes is not due to fortuitous impurity quenching, 

but to solute-solvent interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.5.  Fluorescence decay traces ( λex = 266 nm, λem ≥ 300 nm ) of  (S)-NPX in D-,  
L-tartrate ionic liquids at room temperature (black) and at 55oC (red).   There is a consistent ~ 
10% decrease in lifetime of (S)-NPX in L- compared to that of in D- at room temperature, 
and this difference of lifetime is conserved with increasing temperature. 
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Figure VIII.6.  Arrhenius plots obtained from fluorescence lifetimes of (S,S)-NPX-PYR 
dyad in the D- (black dot) and L- (red dots), tartrate ionic liquids (upper panel), and in (+) – 
(green dots)  and (−) – (blue dots) menthyl-based ionic liquids (lower panel). The activation 
energy, Ea, for the menthyl-based IL pair is almost the same, 2.48 and 2.43 kcal mol

-1, but for 
the tartrates it is 6.2 and 3.7 kcal mol-1, for the D- and L- isomers, respectively, suggesting 
that electron transfer quenching is occurring in the tartrate ionic liquids, but not in the 
menthyl-based pair.  The frequency factors, A, are 3.0 x 1012 and 4.9 x 1010 s-1 for the D- and 
L- tartrates and 5.8 x 109 and 5.7 x 109 s-1 for the (+)- and (−)− menthyls, respectively.  
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Lifetime quenching was monitored as a function of temperature, and Arrhenius plots 

were constructed from the nonradiative rates (assumed to be from intramolecular electron 

transfer) extracted from the lifetime data.  The activation energies are different for the 

tartrates:  6.2 and 3.7 kcal/mol for the D- and L- forms, respectively.   In the case of the 

menthyl-based pair, they are equal within experimental error: 2.45 kcal/mol (Figure VIII.6).  

This suggests that the chiral donor-acceptor dyad interacts differently in the two chiral 

tartrate ionic liquids.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.7.  Normalized steady-state emission spectra of C153 in different solvents. The 
fluorescence spectra were obtained by exciting the sample at 420 nm with a 2-nm bandpass. 
From the peak maxima, the order of polarity of the solvents is:  menthyl ILs < acetone < 
acetonitrile < tartrate ILs ≈ methanol. The ET(30) values of the menthyl ionic liquids are 41.1 
and 41.3 and those of tartrate ionic liquids are 53.3 and 53.5. 
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TABLE VIII.2. Viscosity, η (cP), Data for Chiral Ionic Liquids 
 

η,  TBP Tartrate η,  Menthyl NTf2 Temp. (
o
C) 

D L (+) (-) 

 
22 
 

 
123 ± 3 

 
125 ± 3 

 
940 ± 10 

 
930 ± 10 

 
35 
 

 
46 ± 2 

 
46 ± 2 

 
265 ± 5 

 
270 ± 5 

 
45 
 

 
30 ± 2 

 
31 ± 2 

 
120 ± 3 

 
118 ± 3 

 
55 
 

 
24 ± 2 

 
23 ± 2 

 
60 ± 2 

 
61 ± 2 

 
The viscosity activation energy (Ea,η) was calculated from the slope of the plot of ln(1/η) 
versus 1/T.  Ea,η was larger in the menthyl-based pair than in the tartrate pair: 15.8 and 9.2 
kcal/mol, respectively. 

 

The pyrrolidine moiety in the dyad is a potential electron donor and the naphthalene 

ring acts as an acceptor.  The interaction of the donor-acceptor moiety (in the excited state) 

with the two chiral solvents must be sufficiently different to produce different excited-state 

kinetics.  The viscosity and solvent motion play an important role by influencing twisting 

motion of single bond and chain conformation linking the donor and acceptor moieties.  The 

dependence of viscosity of the ionic liquids on temperature is shown in Table VIII.2.  The 

bis(TBP) tartrate ionic liquids are less viscous than the menthyl-based ionic liquids and most 

likely favor the attainment of preferred geometries for electron transfer to occur, which is 

also consistent with the lower viscosity activation energy of the former (Table VIII.2).  In our 

case, the less viscous tartrate ionic liquids, probably allows the pyrrole nitrogen to come into 

closer proximity with the naphthyl ring by undergoing a conformational change of the donor-
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acceptor linking chain at higher temperatures, resulting in the electron transfer, which is not 

seen in highly viscous menthyl-based ionic liquids.  

Viscosity is not the sole criterion determining the possibility of electron transfer. The 

dielectric constant of the solvent or, more appropriately, the micropolarity is equally 

important because it also influences the radiative and nonradiative rate constants.31  A 

detailed study of electron transfer from N,N-dimethyl aniline (DMA) to pyrene in ionic 

liquids was undertaken by Paul and Samanta,32 who made several observations.  First, the 

rate of electron transfer in the ionic liquid is smaller than that in conventional organic 

solvents, which was attributed to the higher bulk viscosity of the ionic liquids.  Second, the 

rate constant for electron transfer in the ionic liquids is in general 2-4 times larger than the 

diffusion controlled values.  This was attributed to the difference between microviscosity and 

bulk viscosity in ionic liquids, which was originally suggested by Skrzypczak and Neta.33  

Third, as in our case, no exciplex emission was observed in any of the ionic liquids studied, 

which is striking given that the DMA-pyrene system is well known for exciplex formation in 

conventional bulk solvents.  The lack of exciplex formation led the authors to conclude that it 

is the microscopic and not the bulk polarity that could be related to the ET(30) scale that 

determines the formation of exciplex in ionic liquids.   

In order to determine the relative polarity of the ionic liquids studied here, steady-

state emission spectra of coumarin 153 have been obtained in a series of solvents.  Coumarin 

153 (C153) is an extremely well studied solvatochromic probe, whose emission is highly 

sensitive to solvent polarity.  From Figure VIII.7, it can be seen that the emission of C153 in 

the bis(TBP) tartrate ionic liquids is red-shifted compared to that in the menthyl-based  NTf2 

ionic liquids.  Thus the former being more polar, solvates the charge transferred polar excited 
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state of the dyad, imparting more stability and in turn facilitates electron transfer, which is 

absent in the menthyl-based  ionic liquids.  

Conclusion 

In our previous work,26 we observed that though electron transfer was frustrated in 

the menthyl-based NTf2 ionic liquids, still a consistent small stereodifferentiation in the 

fluorescence lifetime of (S,S)-NPX-PYR and (S)-naproxen was obtained.  We proposed that 

this discrimination was purely electronic in nature and did not arise from geometrical effects, 

which can influence nonradiative rate processes, such as intramolecular electron transfer.  In 

our present work, we have studied the interaction of the same chiral naproxen dyad molecule 

in both the previously studied menthyl-based NTf2 ionic liquids and also in 

bis(tertrabutylphosphonium) tartrate ionic liquids.  Unlike in the menthyl pair, the amount of 

quenching is different in the bis(TBP) tartrate isomeric liquids; and the tartrate enantiomers 

have a different temperature dependence on the nonradiative rate of the dyad.  This chiral 

discrimination most likely arises from the steric effects of the different conformations of the 

chiral molecules.  We have shown that viscosity and polarity of the solvents can influence the 

rate of electron transfer.  On the other hand, no such electron transfer quenching is observed 

in the menthyl-based NTf2 solvents.  To our knowledge, this is the first example of chiral 

ionic liquids inducing a stereoselective fluorescence quenching by photoinduced, 

intramolecular electron transfer. It is noteworthy that we have observed chiral discrimination 

by ionic liquids on both radiative and nonradiative processes. 
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Supporting Information 

Structural characterization of the bis(TBP) tartrate ionic liquids.  This information is 

available free of charge via the Internet at http://pubs.acs.org.  The text is included below. 

Characteriation of Chiral Di-anionic Tartrate Ionic Liquids with 

Tetrabutylphosphonium (TBP) Counter Cations by NMR.   

Bis(tetrabutylphosphonium) L-tartrate (Figure VIII.1b): 1H-NMR (300 MHz, D4-

MeOH): δppm = 0.98 (24H, t, J = 6.8 Hz), 1.48-1.59 (32H, m), 2.20-2.29 (16H, m), 4.21 
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(2H, s); 13C-NMR (75 MHz, D4-MeOH): δppm = 12.81, 17.51, 18.14, 23.19, 23.25, 23.62, 

23.83, 73.80, 177.46.  Structural confirmations were carried out by comparing chemical 

shifts of 1H/13C-NMR signals of the product with that of L-tartratic acid. L-tartaric acid: 1H-

NMR (300 MHz, D4-MeOH): δppm = 4.61 (2H, s); 13C-NMR (75 MHz, D4-MeOH): δppm 

= 72.65, 174.17.  The proton signal corresponding to L-tartaric acid: (δppm = 4.61, s, 2H) is 

observed shifted up-field in the L- isomer of the bis(TBP) tartrate (δppm = 4.21, s, 2H) due to 

electron enrichment of the L-tartrate dicarboxylate anions.  The carbonyl carbon 13C-NMR 

signal corresponding to L-tartaric acid (δppm = 174.17) is also observed to be considerably 

shifted up-field in the bis(TBP)  L-tartrate ionic liquid (δppm = 177.46), which is also 

attributed to the electron enrichment L-tartrate dicarboxylate anions.  This type of 1H-NMR-

signal variation has been previously reported for di-anionic tartrate-based, low melting salts 

with tetrabutylammonium counter cations, which is consistent with our observations.1   
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CHAPTER IX. GENERAL CONCLUSIONS 

 

 This thesis focuses on different steady-state and time-resolved spectroscopic 

techniques to explore the excited state photophysics of different biologically and 

environmentally relevant systems.   

 The work presented here is mainly based on solvation dynamics in protein 

environments.  Studies of the solvation dynamics in proteins offer an excellent direct means 

of investigating proteins’ dielectric response.  Although a lot of studies are undertaken to 

understand the solvation response of proteins, their outcomes are disparate.  We attribute 

these discrepancies due to lack of a robust model system which can be exploited to 

unambiguously study the solvation response in protein environments.  In our previous work 

we have thoroughly characterized coumarin 153 (C153) – apomyoglobin complex as a model 

system to study solvation dynamics both experimentally and theoretically.  We have 

experimentally studied solvation of C153, inside the heme pockets of wild type (WT) horse-

heart (HH) myoglobin (Mb) and leghemoglobin (Lba), using fluorescence upconversion 

technique and comparison of the experimental results with those obtained from molecular 

dynamic simulations are presented in chapter III.  We found that there is an excellent 

agreement between the experimental results and those obtained from molecular dynamics 

simulations.  In both cases initial faster solvation is followed by a slower response, which is 

slower in apoLba than in apoMb.  Solvation of the C153 inside the heme pockets is very 

rapid with approximately 60% occurring within ~300 fs and we have attributed this to 

interactions with water and possibly the protein.  The differences in the response in the two 

proteins are probably due to the differences in the hemepockets, the region probed by C153.   
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 Our results are in odds with those of Zhong, Zewail and coworkers where they have 

reported that aqueous solvation in proteins (using the intrinsic tryptophan as a probe), is 

much slower than that in bulk water and the slow solvation was attributed to “biological 

water.” The nonexponential fluorescence decay of tryptophan has stimulated the generation 

of an alternative method of constructing C(t),  which Zewail, Zhong, and coworkers use to 

calculate the solvation correlation functions, C(t).  We provided an analysis of various 

methods of constructing C(t) and reviewed selected examples from the literature in chapter 

IV.  We have demonstrated that it is possible to exaggerate the amplitudes of slower 

solvation phenomenon that may be attributed to “biological water”, water-protein 

interactions, or the protein itself.  We concluded that C(t)  is a normalized function whose 

form and interpretation depend critically upon the terms in its denominator, namely the 

positions of the “zero-time” and “steady-state” spectra, the former of which we argue is most 

accurately provided by the method of Fee and Maroncelli.  

 We extended our studies of solvation dynamics inside the heme pockets, using wild-

type sperm whale myoglobin and its mutants as described in chapter V.  The results we found 

are interesting.  Consistent with our previous studies, we found a remarkable agreement 

between the solvation correlation functions, (C(t)s), from fluorescence upconversion 

experiments and those obtained from molecular dynamics simulations in wild-type 

apoprotein, but deviations were observed in the mutants.  A close comparison of the C(t)s for 

these two wild-type systems, namely horse-heart and sperm-whale indicates small but 

significant differences that must arise from this single amino acid substitution in the heme 

pocket.  The agreement between experiment and theory suggests no reason to attribute the 

disagreement observed in case of mutants, to the force fields used in the simulation but rather 
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to question the structure of the complex used as the starting point for the simulation.  We 

consequently performed exhaustive characterization of the mutant complexes by NMR study 

of the complex of C153 with equine apoMb, along with fluorescence energy transfer and 

anisotropy of all of the equine and sperm-whale complexes to complement the NMR studies.  

All our experiments collectively provide solid evidence that molecular dynamics simulations 

can be used to interpret solvation dynamics measurements successfully, provided the initial 

structures of the system under study are well characterized. 

 Besides studying protein solvation, we also focused on study of utilizing room 

temperature ionic liquids (RTILs) as green medium for hydrolysis of cellulose (a major 

biomass constituent) to produce biofuels in chapter VI and VII.  Using optical and 

calorimetric techniques, we investigated the reactivity and stability of a T. reesei cellulases in 

eight ionic liquids, out of which only 1-methylimidazolium chloride (mim Cl) and tris-(2-

hydroxyethyl)-methylammonium methylsulfate (HEMA) provided a medium in which 

hydrolysis could occur.  While hydrolysis at 65˚C was initially much faster in buffer than in 

these two liquids, it ceased after two hours; whereas, the reaction continued monotonically in 

the two ionic liquids.  This difference in the rate of hydrolysis is largely attributed to two 

factors:  1) the higher viscosity of the ionic liquids; 2) the enzymes are irreversibly denatured 

at 50˚C in buffer while they are stable to temperatures as high as 115˚C in HEMA.  We also 

found that fluorescence quenching of aromatic amino acids of the enzymes is not necessarily 

a signature of the enzyme denaturation.  Contrary to the literature reports, we further 

explored that this quenching mechanism in the presence of ionic liquids formed from 

imidazolium cations and chloride anions, arises from the imidazolium rather than the 

chloride.  Having established that T. reesei cellulases are more stable in HEMA than in 
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buffer, we extended our work to pure enzyme component endo-1,4-β-D-glucanase (EG) from 

A. niger to understand how HEMA can influence its activity and impart temperature stability 

as well as how it can contribute to the hydrolysis of cellulose.  Studies in aqueous HEMA 

mixtures showed enhanced activity of the EG in the presence of HEMA, which varied with 

temperature.  This thus reaffirmed our hypothesis that the enzymatic activity is a compromise 

between both enzyme stability in a particular solvent and temperature and the viscosity of the 

medium, since a direct correlation between activity and solvent viscosity could not be 

established.  Because of the thermal stability that HEMA imparts to enzymes, it proves to be 

a novel, green medium for performing cellulose hydrolysis reactions to convert biomass into 

biofuels and provides an ideal starting point for the design of ionic liquids, not only for the 

hydrolysis of biomass, but for use with a wide spectrum of enzymatic reactions. 

Chapter VIII demonstrates an extension of our previous study on a chiral naproxen 

dyad in a chiral pair of menthyl-based NTf2 ionic liquids where we observed that though 

intramolecular electron transfer was frustrated, a consistent small stereodifferentiation in the 

fluorescence lifetime of the dyad was obtained.   We studied the interaction of the same 

chiral naproxen dyad molecule in both the previously studied menthyl-based NTf2 and also in 

bis(tertrabutylphosphonium) tartrate ionic liquids.  Unlike in the menthyl pair, the amount of 

quenching is different in the bis(TBP) tartrate isomeric liquids.  This chiral discrimination 

most likely arises from the steric effects of the different conformations of the chiral 

molecules.  We observed that viscosity and polarity of the solvents can influence the rate of 

electron transfer.  It is noteworthy that we have observed chiral discrimination by ionic 

liquids on both radiative and nonradiative processes. 
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